References
1. Bruce H Dobkin, Strategies for stroke rehabilitation, Lancet Neurol (2004), 3: 528–36
2. Nudo R, Wise B, SiFuentes F, Milliken G. Neural substrates for the effects of rehabilitative
training on motor recovery after ischemic infarct. Science (1996), 272: 1791–94.
3. Liberson WT, Hotmquest HJ, Dow M. Functional electrotherapy: stimulation of the per-
oneal nerve synchronized with the swing phase of the gait of hemiplegic patients. Arch
Phys Med Rehabil. (1961), 42:101–105.
4. Bogataj U, Gros N, Kljajic M, Acimovic R, Malezic M. The rehabilitation of gait in pa-
tients with hemiplegia: a comparison between conventional therapy and multichannel func-
tional electrical stimulation therapy. Phys Ther. (1995), 75:490 –502.
5. Wang RY, Yang YR, Tsai MW, Wang WT, Chan RC. Effects of functional electric stimu-
lation on upper limb motor function and shoulder range of motion in hemiplegic patients.
Am J Phys Med Rehabil. (2002) Apr;81(4):283-90.
6. A functional electric stimulation—assisted exercise therapy system for hemiplegic hand
function Gritsenko V, Prochazka A Arch. Phys.Med. and Rehabil. (2004), 881-885
7. Prochazka A, Gauthier M, Wieler M, Kenwell Z. The bionic glove: an electrical stimulator
garment that provides controlled grasp and hand opening in quadriplegia. Arch Phys Med
Rehabil (1997), 608–14.
8. Popovic D, Stojanovic A, Pjanovic A, Radosavljevic S, Popovic M, Jovic S, et al. Clinical
evaluation of the bionic glove. Arch Phys Med Rehabil (1999), 299–304.
9. Kurosawa K, Futami R, Watanabe T, Hoshimiya N. Joint angle control by FES using a
feedback error learning controller. IEEE Trans Neural Syst Rehabil Eng. (2005), Sep. 13
(3):359-71.
10. H. Gomi and M. Kawato, Neural network control for a closed-loop system using feedback-
errorlearning , Neural Networks, vol. 6, pp. 933--946, 1993.
11. I. Bernabucci, T.D'Alessio, S.Conforto, M.Schmid Controlling planar ballistic movements
by means of neural system. X Mediterranean Conf. on Med. and Biol. Eng. and Comp.
IFMBE Proceedings, MEDICON 2004 Ischia, Italy (2004)
12. M. Goffredo, M. Carli, S. Conforto, D. Bibbo, A. Neri, T. D’Alessio, Evaluation of Skin
and Muscular Deformations in a non-rigid motion analysis, Proceedings ISandT/SPIE's In-
ternational Symposium on Medical Imaging San Diego, California, USA. (2005)
13. W. Maa, X. Maa, S. Tsoa, Z. Panb, A direct approach for subdivision surface fitting from a
dense triangle mesh, Computer-Aided Design 36 (2004) 525–536
14. M. Goffredo, M. Carli, M. Schmid, A. Neri, Study of muscular deformation based on sur-
face slope estimation, Image Processing: Algorithms and Systems V - Electronic Imaging
2006 San Jose, California, USA (2006)
15. Kass M.,Witkin A., Terzopoulos D.: Snakes: Active contour models. Proc. 1st Int. Conf. on
Computer Vision (1987) 259–268
16. Lee A (2002) webpage www.virtualdub.org
17. Canny, J.: A Computational Approach to Edge Detection. IEEE Trans PAMI (1986) 679-
698
18. L. L. Massone and J. D. Myers "The role of the plant properties in arm trajectory forma-
tion: a neural network study," IEEE Trans. Sys. Man Cyb. vol. 26, pp. 719-732, 1996.
19. R. Drillis, R. Contini, and M. Bluestein, "Body Segment Parameters; a Survey of Meas-
urement Techniques," Artif Limbs, vol. 25, pp. 44-66, 1964.
20. Wagg, D. K. and Nixon, M. S. (2004) Automated Markerless Extraction of Walking People
Using Deformable Contour Models. Computer Animation and Virtual Worlds 15(3-4) pp.
399-406.
105