
INVOKING ADAPTED WEB SERVICES USING A
MULTI-AGENTS SYSTEM

The Framework PUMAS-AWS

Céline Lopez-Velasco, Angela Carrillo-Ramos, Jérôme Gensel,
Marlène Villanova-Oliver, Hervé Martin

LSR-IMAG Laboratory, SIGMA Team, B.P.72, 38402 Saint Martin d’Hères Cedex, France.

Keywords: Adaptation, Web Services, Web-based Information System, Agents.

Abstract: Nowadays, users access Web-based Information Systems (WIS) through various devices (desktops, laptops,
Mobile Devices (MD) such as PDA). In nomadic environments, when a user queries a WIS, the result should
be adapted according to her/his context of use. In our work, this context is represented by the personal
characteristics of the user, the features of her/his access device and her/his location. In order to provide WIS
designers with mechanisms for adapting information we propose PUMAS-AWS. This is a multi-agent
framework which integrates the concept of Adapted Web Services (AWS, concept which introduces the
adaptation into the Web Services standards) into the PUMAS framework (which is able to adapt, according to
the context of use, the results of the queries of a nomadic user). This paper describes PUMAS-AWS which
provides a nomadic user with adapted information retrieved from one or several WIS based on AWS, using
two processes: the matching process from AWS architecture and the query routing process from PUMAS.

1 INTRODUCTION

Web Information Systems (WIS) are used for
collecting, structuring and managing data which can
be accessed though the Web. Nowadays, numerous
kinds of devices (such as desktops, laptops, PDA)
can be used for accessing these WIS. The challenge
of WIS designers is to provide users with relevant
information adapted to her/his context of use.
According to (Dey et al., 2000), a context is “any
information that can be used to characterize the
situation of an entity”. In our work, the context of
use (that we call context in the remainder of this
paper) is composed of: the technical features of the
access device (memory, screen size), the personal
characteristics of the user (preferences) and the
user’s location. This context is used for adapting the
content of the retrieved information. Adapting
information according to user’s characteristics is one
of the main interests of the Adaptive Hypermedia
community (Brusilovsky, 2001), but proposals made
in this area generally concern standard
configurations of the access devices (powerful and
fixed devices). Some works focus on adaptation for
Mobile Devices (MDs). For instance, CC/PP (by the

W3C) describes device’s features (e.g., screen size,
memory) through metadata.. However, few address
the issues of adaptation to the characteristics of the
user. Our work aims at providing a user with
adapted information according to her/his context.
XML and CC/PP are used in our proposal in order to
provide WIS designers with mechanisms for
formalizing, defining and extending the definition of
context.

In order to provide users with adapted
information, architectures based on the agent
technology have been proposed (Berhe et al., 2004),
(Gandon et al., 2004). An agent is an autonomous
and proactive entity which provides a user with
services specified into a unified and integrated
execution model (definition from FIPA). We have
proposed a framework based on agents, called
PUMAS (Carrillo et al., 2005) in order to adapt
information sent by one or several sources of
information (SoI), according to different criteria
(e.g., user’s profile, MD features). The PUMAS
architecture is organized as a Hybrid P2P system
(Shizuka et al., 2004) where one agent is in charge
of searching for information inside SoI.

127Lopez-Velasco C., Carrillo-Ramos A., Gensel J., Villanova-Oliver M. and Martin H. (2006).
INVOKING ADAPTED WEB SERVICES USING A MULTI-AGENTS SYSTEM - The Framework PUMAS-AWS.
In Proceedings of WEBIST 2006 - Second International Conference on Web Information Systems and Technologies - Internet Technology / Web
Interface and Applications, pages 127-132
DOI: 10.5220/0001255101270132
Copyright c© SciTePress

In this paper, we focus on WIS based on Web
Services (WS). WS are technologies based on a
standard architecture (provider, registry and
requestor) and standard languages (WSDL and
SOAP of the W3C, UDDI of the consortium OASIS)
which allow interoperability between the entities of
the WS architecture. The assumption made in this
paper is that each query executed in a WIS is a call
of a WS. Since the standards of WS do not consider
adaptation, the notion of Adapted Web Services
(AWS) has been defined in (Lopez-Velasco, 2005).
This notion consists in invoking a WS which best
satisfies the context. For this purpose, the AWS
architecture is replicated on each WIS in order to
select the best AWS. We show in this paper how
PUMAS can be used in order to centralize the AWS
architecture. Especially, the Query Routing process
(Xu et al., 1999) in PUMAS-AWS enables to find the
“best” AWS (i.e. the one which is the most adapted
to user’s needs considering the context) among the
set of AWS obtained from different SoI queried.

In this paper, first, we present the basis of this
work (PUMAS and AWS). Then, we describe the
PUMAS-AWS architecture. Finally, we present some
related works, before we conclude.

2 PUMAS AND AWS

This section describes the basis of our proposal
(PUMAS architecture and the concept of AWS), in
order to explain the integration of this work.

PUMAS is a framework which offers a solution
for retrieving adapted information (distributed
between different SoI) through MDs. The
architecture of PUMAS is composed of four Multi-
Agent Systems (MAS, see Figure 1). First, the
Connection MAS provides mechanisms for
facilitating the connection from different kinds of
devices to the system. Second, the Communication
MAS ensures a transparent communication between
the used access device and the system. It also adapts
information according to the technical constraints of
the user’s device. Third, the Information MAS
receives user queries, redirects them to the “right”
SoI (e.g., the one which is the most likely to answer
the query). This MAS adapts information according
to the user’s profile in the system (preferences) and
returns filtered results to the Communication MAS.
In charge of the adaptation, the agents of the
Adaptation MAS communicate with the agents of the
three other MAS in order to exchange information
about the user (explicitly extracted from XML files

or inferred from rules), and about the context.
PUMAS allows to adapt information from different
SoI whether they are located on servers or on MDs.
In order to make it possible, one agent is executed
on each SoI, and searches information inside it in
order to answer user’s requests. For a detailed
description of PUMAS, see (Carrillo et al., 2005).

The main advantage of the use of WS is that they
allow remote applications to easily interoperate. The
classical WS architecture relies on three standards
(WSDL, UDDI, SOAP) and on three entities
(provider, registry, requestor): the provider
describes the WS with WSDL and publishes their
descriptions in the registry (UDDI); The requestor
researches in the registry WS which can meet to
her/his needs. The communication between the
requestor and the provider of the WS chosen is
allowed by SOAP. However, in this architecture, no
special attention is paid to the adaptation of
information according to the context. In (Lopez-
Velasco, 2005), the notion of AWS (Adapted Web
Services) has been introduced as a classical and
predetermined WS in order to be invoked in a
specific context. Traditionally, WSDL describes a
WS through its exchanged messages, proposed
methods, data, structure and, communication
protocol. An extension of WSDL, called AWSDL
(Adapted WSDL), has been proposed (Lopez-
Velasco, 2005). It allows the description of the
adaptation proposed by the AWS, as well as user
adaptation needs. An architecture, based on the
classical one, has been created for the definition and
management of AWS. This architecture extends the
classical architecture with three modules: the
Filtering Registry module, the Filtering Profile
module, and the Adaptation Matching Module. The
Filtering Registry module splits the AWS description
provided by the provider into two parts: first the
WSDL (classical description transmitted to the
registry), second the AWSDL (description of the
proposed adaptation recorded in a database). The
Filtering Profile module splits the requestor’s query
formulated in AWSDL into two parts: first the need
of service (classical query transmitted to the
registry), second the needs of adaptation (recorded
in a database). The result of the classical query (a list
of WS) is intercepted by the Filtering Profile module
which transmits it to the Filtering Registry
component. This component searches in the database
the AWSDL description of the resulting WS. In order
to perform the matching process, the Adaptation
Matching Module collects the AWSDL description

WEBIST 2006 - INTERNET TECHNOLOGY

128

of the AWS available and the query (in AWSDL). An
XML file which contains the list of the AWS able to
answer the user’s needs of information and
adaptation is sent to the requestor. The user chooses
an AWS from the returned list and the
communication between the requestor and the
provider is established by SOAP.

We are interested in retrieving information from
AWS-based WIS which use the AWS architecture.
This architecture requires each WIS to have its own
Adaptation Matching Module. in order to avoid this
replication, we propose PUMAS-AWS, which
integrates into PUMAS each entity of the AWS
architecture. Through this integration, PUMAS-AWS
manages the Matching process in a centralized way.
Systems using PUMAS-AWS are able to call AWS
available in one or several WIS (playing the role of
the provider).These WIS are also considered like SoI
(and become registry).

3 PUMAS-AWS

In this section, we describe both the integration of
each entity of the AWS architecture into PUMAS
(see Figure 1) and three tasks: the Management of
AWS, the Matching Process and the Query Routing
process.

3.1 PUMAS Agents and AWS
Entities

In PUMAS-AWS, the roles of some PUMAS agents
change in order to integrate the activities of entities
of the AWS architecture (provider, registry,

requestor, Filtering Profile, Filtering Registry, and
AMM). We also include a new agent which manages
the AWS, called the AWS Agent.

The Mobile Device Agent (MDAgent) is
executed on the user’s access device. It is considered
as a requestor since this agent sent queries for an
AWS to the framework. The activities of the
Filtering Registry module are performed by the
Router Agent (RA) and the AWS Agent. These
agents search for the AWS which correspond to the
user’s needs.

The role of the Filtering Profile module is
shared by the Content Filter Agent (CFA) and the
Display Filter Agent (DFA), which manage the
context defined by three XML files: the Static
Characteristics (SC) file describing the permanent
information of a user (e.g., User ID); the Dynamic
Characteristics (DC) file which describes
information about a user which varies during a
session or between two sessions (e.g., location); and,
the Mobile Device Characteristics (MDC) file which
describes the features of the MD (e.g., screen size,
memory). A file called User’s Preferences (UP)
describes the user’s preferences, especially those
concerning the criteria of adaptation (e.g., location).
PUMAS-AWS manages these files as follows: the SC
file is sent at the first connection of the described
user to the CFA which consults it during the
following connections. The DC file is sent by the
UserAgent (which manage the user’s profile) to the
CFA at each connection in order to update
information. The DFA manages the characteristics of
a user’s MD through the MDC file. It holds a
Knowledge Base (KB) which contains information
about features of different types of MDs (e.g.,
supported file formats) and acquired knowledge

Figure 1: The PUMAS-AWS architecture.

INVOKING ADAPTED WEB SERVICES USING A MULTI-AGENTS SYSTEM - The Framework PUMAS-AWS

129

from previous connections (e.g., bandwidth for data
transmissions). The MDAgent sends the MDC file to
the DFA. The DFA updates the information about a
MD during each session.

We distinguish two registries. First, the Local
Registry is managed by the ISAgent (ISA) and
contains the list of AWS provided by the SoI which
hosts this agent. The ISA communicates with the
AWS Agent in order to inform it about changes in
the AWS. Second, the Global Registry is managed
by the AWS Agent and centralizes the set of
available AWS. The role of provider is played by the
WIS (SoI). In each WIS, the ISA is in charge of
notifying changes and updates of the AWS provided
by the WIS.

Two agents perform the role of the AMM: the
Router Agent (RA) which redirects queries to the
right SoI and applies a strategy which depends on
adaptation criteria and the AWS Agent which
manages the AWS (see following subsections).

3.2 Managing AWS

The AWS Agent (located into the Adaptation MAS)
manages all information about AWS. This agent
stores in its KB pieces of knowledge (called facts
and described using the JESS syntax –
http://herzberg.ca.sandia.gov/jess/) for each SoI.
These descriptions of SoI are recorded in a XML file,
named WIS-characteristic (WISC), sent to the RA by
the ISA. The description of a SoI is composed of the
ISA, the different AWS (WSDL and AWSDL)
provided by WIS, the device where it is stored (e.g.,
server, MD) and its location.

The WISC file is translated by the RA into JESS
facts (we use the primitive “assert” in order to
define an instance of an unordered fact in JESS and
store it into the KB of JESS). In this way, the RA
knows the information of the WIS (its ID, its ISA, the
information managed by this WIS, the location of the
WIS, and the set of AWS provided). An example of a
WIS which represents a Travel Agency is presented
in the Figure 2.
(assert (WIS
(ID “TravelAWIS”)
(ISAgent “TravelA-ISA”)
(Managed-Information “Travels” “Holyday Stays”
“Flights” “Promotions”)
(Device “server”)
(Location “http://YourTravel.imag.fr”)
(AWS-ID “AWS-T-1”)))

Figure 2: An instance of the JESS Template which defines
a WIS, playing the role of SoI.

This example defines a WIS identified by its
name “TravelAWIS”, and by its ISA “TravelA-ISA”.
This WIS manages information about Travels,

Holiday Stays, Flights and Promotions. It is located
on a server whose address is
“http://YourTravel.imag.fr”. This WIS hosts the AWS
called AWS-T-1. There is one fact for the WSDL of
an AWS. This description, which relies on the WSDL
elements, is used to define an AWS (identified by an
attribute ID): the traditional elements of WSDL
(import, types, message, portType, binding, service)
and, the AWSDL elements describing the level of
adaptation proposed by the AWS.

3.3 Matching Process

The Matching process in PUMAS-AWS consists in
retrieving the set of AWS which answer the user’s
query according to her/his context.

In order to illustrate the Matching process, let us
consider a user, named Alex who has defined in his
User’s Preference XML file information about his
preferences for his holidays. These preferences are
interpreted by the PUMAS-AWS component as
follows: Alex prefers the holiday stays at the beach,
which have as departure city New York and he wants
to travel with the BestAirlines company. In order to
perform the matching, this process is split into two
phases. First, PUMAS-AWS considers the user’s
needs in terms of the activities that he wants to
execute on this system (e.g., to search information
about holidays). According to the user’s queries, the
XML files and the WSDL description of the AWS, the
AWS Agent selects a set of AWS. Second, this set of
AWS is filtered by the AWS Agent. This Filtering
process uses the criteria of adaptation (e.g.,
location). The AWS Agent searches for the AWS able
to provide adapted information according to the four
description files (UP, SC, DC and MDC). These files
are compared with the AWSDL description of the
AWS. The refined list of AWS is sent to the RA
which launches the Query Routing process described
in the next section. In our example, the AWS Agent
selects among the AWS obtained in the previous
phase, those which are the most adapted to Alex’s
preferences. After the Filtering process, the AWS
selects the AWS which satisfy the preferences stored
in the UP file (step considered in the Query Router
process).

3.4 Query Routing Process

The Router Agent (RA) processes the Query Routing
with the help of the AWS Agent which provides it
with information about SoI and their AWS. In
PUMAS-AWS, the Query Routing process has been

WEBIST 2006 - INTERNET TECHNOLOGY

130

simplified and adapted compared to the one
performed in PUMAS. This process relies on two
activities presented as follows.

The first activity of the RA is the analysis of the
query which leads to a possible split of the query.
This split is based on the one hand, on the criteria of
adaptation (e.g., location, user’s preferences), and on
the other hand, on the knowledge (managed by the
AWS Agent and the RA) about the SoIs and their
AWS (see Section 3.2). The RA analyzes the
complexity of the query with the help of the AWS
Agent. The number of AWS to be invoked increases
the work to be done by the RA in order to compile
the results of queries (this task is not considered in
this paper). After this analysis, the RA decides if it
has to divide the query in sub-queries or not. For
instance, the RA can split the Alex’s query “holiday
stays at the beach, which leave from New York
travelling through BestAirlines” into several sub-
queries if there is no SoI or an AWS able to answer
the complete query. For example, in order to satisfy
the Alex’s query, it is necessary to consider the
reservation of a flight, of a hotel and a car rental
package. This query is split in the following sub-
queries: (1) “plane tickets for holiday stays at the
beach”, (2) “hotels for holiday stays at the beach”
and, (3) “car rental packages for holiday stays at the
beach”; all of the queries consider New York as the
departure city and BestAirlines as Airline Company.
This split is done because several SoI (known by the
AWS Agent and the RA) manage information.

The second activity is the selection of AWS
answering user’s queries. In order to answer a query,
the RA invokes AWS. The RA asks the AWS Agent
for AWS which can answer the user’s queries. The
AWS Agent performs the Matching process and
sends this information to the RA. In order to select
the AWS which match the best the adaptation need,
the RA applies the adaptation criteria of the query
(defined in the XML files).

In our example, let us suppose that three AWS
satisfy the query “plane tickets” (AWS-PT-1, AWS-
AL1-2, AWS-AL2-2), two AWS satisfy the query
“hotels” (AWS-H-2, AWS-CH-3), and two AWS
satisfy the query “car rental” (AWS-RC-1, AWS-RC-
4). The facts received by the RA from the AWS
Agent are shown in Figure 3. Let us suppose that
Alex prefers AWS which are executed on servers
located in agencies of the city where he works. The
RA selects the following AWS:
”http://LocalAirline/services/AWS-AL2-2”, and
“http://LocalHotel/services/AWS-H-2” and
“http://RentalCar2/services/AWS-RC-4”. The RA
invokes these AWS and compiles the answers

obtained from the different AWS, selecting the most
relevant ones according to given criteria of
adaptation of the user’s queries before returning the
result to the user.

; Facts representing the AWS which answer
the query “plane tickets”
(assert (AWS-for-query
(query “plane tickets”)
(AWS-location
“http://YourTravel/services/AWS-PT-1”
“http://OneAirline/services/AWS-AL1-2”
“http://LocAirline/services/AWS-AL2-2”)))
;Facts representing the AWS which answer
the query “hotels”
(assert (AWS-for-query (query “hotels”)
(AWS-location
“http://LocalHotel/services/AWS-H-2”
“http://DestHotel/services/AWS-CH-3”)))
;Facts representing the AWS which answer
the query “car rental”
(assert (AWS-for-query
(query “car rental”)
(AWS-location
“http://CarRental1/services/AWS-CR-1”
“http://CarRental3/services/AWS-CR-4”)))

Figure 3: Facts received by the RA from the AWS Agent.

4 RELATED WORK

A user would like the results of her/his queries to be
adapted to her/his context of use. In order to achieve
this, (Gandon et al., 2004) stress the need of
considering knowledge about user’s preferences and
contextual features in order to search for
information. Their approach is based on user’s
preferences, the rights granted to a user in order to
change her/his preferences in a dynamic way and the
representation of her/his contextual information.
Unlike PUMAS-AWS, this work does not search
information in AWS-based WIS. PUMAS-AWS uses a
representation of the context which considers the
user’s characteristics as well as those of her/his MD
and her/his location in order to adapt information.
This context can be easily extended with
characteristics defined in XML files and it is changed
before, during and after the executions of user
queries.

The work presented in (Berhe et al., 2004)
proposes an architectural framework which exploits
four profiles for adapting information to a user:
content or media (format, size, location where media
is stored), user (preferences), device (hardware and
software capabilities), network and service
(supported formats, network connection, bandwidth,
latency). All of these characteristics can be defined
in PUMAS-AWS in the SC, DC and MDC files.
Moreover, these characteristics can be dynamically
changed, unlike to the work of (Berhe et al., 2004).

INVOKING ADAPTED WEB SERVICES USING A MULTI-AGENTS SYSTEM - The Framework PUMAS-AWS

131

This proposal unlike PUMAS-AWS does not
consider information retrieval from different devices
(servers and MDs).

Concerning Web Service (WS) adaptation, some
works use technologies external to the classical WS
architecture in order to perform different
adaptations. For instance, (Pashtan et al., 2004)
propose to adapt the content delivered by the WS by
transforming it using XSLT style sheets. However,
their approach does not consider the user’s context,
considering only the user’s device and preferences.
(Keidl et al., 2004) propose an integration of the
context definition into SOAP in order to find a WS
able to satisfy user’s needs considering her/his
location, devices, presentation properties, and
connectivity preferences. By using SOAP in order to
discover a service, this proposal violates somehow
the principles WS standard architecture, where SOAP
is only used for communication purposes. Through
AWSDL, our proposal respects the standard WS
architecture.

5 CONCLUSION

In this paper, we have integrated the concept of
Adapted Web Services (AWS) into the Peer
Ubiquitous Multi-Agent System (PUMAS)
framework. This result is PUMAS-AWS, a
framework which focuses on the search of
information among several AWS-based WIS. These
AWS are able to answer queries in an adapted way,
according to the context of use (composed of the
personal characteristics of the user, the features of
the access device, and the user’s location). In this
paper, we also highlight the roles of the Router
Agent and the AWS Agent of PUMAS-AWS which
are in charge of the Matching and the Query Routing
process, fundamental pieces for adapting
information. The Matching process consists in
retrieving the set of AWS which answer the query
according to the context. The Query Routing process
relies on two activities: the analysis of the query and
the selection of AWS. The first activity leads to a
possible split of the query. The second one is
achieved by the Matching process.

We now aim at improving the algorithms and
mechanisms used in the Matching Process. We also
need to define a system for establishing priorities
among fixed criteria of adaptation in order to
facilitate the process of selecting AWS performed by
both the AWS Agent and the RA. In order to improve
the matching process, we investigate semantic
approaches, such as WSMO introduced by (Roman

et al., 2005). Finally, we are also interested in
defining a mechanism for capturing the context in an
automatic way.

REFERENCES

Carrillo-Ramos, A., Gensel, J., Villanova-Oliver, M.,
Martin, H., 2005. Adapted information retrieval in
Web Information Systems using PUMAS. In AOIS
2005, 7th Int. Workshop on Agent Oriented
Information Systems.

Lopez-Velasco C., 2005. AWSDL : une extension de
WSDL pour des services Web adaptés. In INFORSID
2005, 23th Conference INFORSID, 133-148.

Berhe, G., Brunie, L., Pierson, J.M., 2004: Modeling
Service-Based Multimedia Content Adaptation in
Pervasive Computing. In CF 2004, 1st Conf. on
Computing Frontiers. ACM Press, 60-69.

Brusilovsky P., 2001. Adaptive Hypermedia. In User
Modeling and User-Adapted Interaction, 11 (1-2), 87-
110.

Dey, A. K., and Abowd, G. D., 2000. Towards a better
understanding of context and context-awareness. In
CHI’2000 Workshop on the What, Who, Where, When,
and How of Context-Awareness.

Gandon, F., Sadeh, N., (2004, Oct). Semantic Web
Technologies to Reconcile Privacy and Context
Awareness. In Journal of Web Semantics, 1 (3).

Keidl M., Kemper A., 2004. Towards Context-Aware
Adaptable Web Services. In WWW 2004, 13th World
Wide Web Conference.

Pashtan A., Heusser A., Scheuermann P., 2004. Personal
Service Areas for Mobile Web Applications. In IEEE
Internet Computing, 8 (6), 34-39.

Roman D., Keller U., Lausen H., Bruijn, J., Lara R.,
Stollberg M., Polleres, A., Feier, c., Bussler, C.,
Fensel, D., 2005. Web Service Modeling Ontology. In
Applied Ontology 1. IOS Press, 77-106.

Shizuka, M., Ma, J., Lee, J., Miyoshi, Y., Takata, K.,
2004. A P2P Ubiquitous System for Testing Network
Programs. In EUC 2004, Embedded and Ubiquitous
Computing. LNCS, Vol. 3207, Springer, 1004-1013.

Xu, J., Lim, E., Ng, W.K., 1999. Cluster-Based Database
Selection Techniques for Routing Bibliographic
Queries. In DEXA 99, 10th Int. Conf. on Database and
Expert Systems Applications. LNCS, Vol. 1677.
Springer, 100-109.

WEBIST 2006 - INTERNET TECHNOLOGY

132

