a new spatial pattern selection algorithm based on
correlation scores is proposed here. This selection
mechanism works both on standard PCA and KPCA,
and both give superior results compared to the tradi-
tional simple PCA pattern. In the implementation ex-
ample with NDVI data and the comparison with the
global drought patterns during the 1982-1983 El Ni
˜
no
episode, the combined patterns show much better
agreement with the drought patterns on details such
as locations and shapes.
REFERENCES
Cox, T. F. and Cox, M. A. (2000). Multidimensional Scal-
ing. Chapman & Hall.
CPC (Climate Predication Center/NOAA)
(2006). (STAND TAHITI - STAND DAR-
WIN) SEA LEVEL PRESS ANOMALY.
http://www.cpc.ncep.noaa.gov/data/indices/soi
(Last accessed on Feb. 5, 2006).
Cracknell, A. P. (1997). The Advanced Very High Resolu-
tion Radiometer. Taylor & Francis Inc.
Emery, W. J. and Thomson, R. E. (2001). Data Analysis
Methods in Physical Oceanography. Elsevier.
GES DISC (NASA Goddard Earth Sciences (GES)
Data and Information Services Center (DISC))
(2006). Pathfinder AVHRR Land Data.
ftp://disc1.gsfc.nasa.gov/data/avhrr/Readme.pal
(Last accessed on Feb. 9, 2006).
Haddad, R. A. and Parsons, T. W. (1991). Digital Sig-
nal Processing: Theory, Applications, and Hardware.
Computer Science Press.
Ham, J., Lee, D., Mika, S., and Sch
¨
olkopf, B. (2004). Ker-
nel View of the Dimensionality Reduction of Mani-
folds. In Proceedings of the 21st International Con-
ference on Machine Learning.
Hastie, T. and Stuetzle, W. (1989). Principal Curves. Jour-
nal of the American Statistical Association, 84:502–
516.
Holmes, P., Lumley, J. L., and Berkooz, G. (1996). Tur-
bulence, Coherent Structures, Dynamical Systems and
Symmetry. Cambridge University Press.
Kramer, M. (1991). Nonlinear Principal Component Anal-
ysis Using Autoassociative Neural Networks. AIChE
J., 37(2):233–243.
Krzanowski, W. J. (1988). Principles of Multivariate Anal-
ysis: A User’s Perspective. Oxford University Press.
Li, Z. and Kafatos, M. (2000). Interannual Variability of
Vegetation in the United States and Its Relation to
El Ni
˜
no/Southern Oscillation. Remote Sensing of En-
vironment, 71(3):239–247.
Lorenz, E. N. (1959). Empirical orthogonal functions and
statistical weather prediction. Final Report, Statistical
Forecasting Project, 1959; Massachusetts Institute of
Technology, Dept. of Meteorology, 29–78.
Mika, S., Sch
¨
olkopf, B., Smola, A., M
¨
uller, K.-R., Scholz,
M., and R
¨
atsch, G. (1999). Kernel PCA and De-
noising in Feature Spaces. In Kearns, M. S., Solla,
S. A., and Cohn, D. A., editors, Advances in Neural
Information Processing Systems 11, pages 536 – 542,
Cambridge, MA. MIT Press.
Monahan, A. H. (2001). Nonlinear Principal Component
Analysis: Tropical IndoPacific Sea Surface Temper-
ature and Sea Level Pressure. Journal of Climate,
14(2):219–233.
NDMC (National Drought Mitigation Cen-
ter) (2006). What is Drought?
http://www.drought.unl.edu/whatis/elnino.htm (Last
accessed on Feb. 8, 2006).
Philander, S. G. (1990). El Ni
˜
no, La Ni
˜
na, and the Southern
Oscillation. Academic Press.
Ropelewski, C. and Jones, P. (1987). An Extension of the
Tahiti–Darwin Southern Oscillation Index. Monthly
Weather Review, 115(9):2161–2165.
Roweis, S. and Saul, L. (2000). Nonlinear Dimensional-
ity Reduction by Locally Linear Embedding. Science,
290(22 December 2000):2323–2326.
Sch
¨
olkopf, B., Burges, C., and Smola, J. (1999a). Advances
in Kernel Methods: Support Vector Learning. MIT
Press.
Sch
¨
olkopf, B., Mika, S., Burges, C., Knirsch, P., M
¨
uller, K.-
R., R
¨
atsch, G., and Smola, A. (1999b). Input Space
vs. Feature Space in Kernel-Based Methods. IEEE
Transactions on Neural Networks, 10(5):1000–1017.
Sch
¨
olkopf, B., Smola, A., and M
¨
uller, K.-R. (1998). Non-
linear Component Analysis as a Kernel Eigenvalue
Problem. Neural Computation, 10(5):1299–1319.
Tan, J. (2005). Applications of Kernel PCA Methods to Geo-
physical Data. George Mason University. PhD Thesis.
Tan, J., Yang, R., and Kafatos, M. (2006). Kernel PCA
Analysis for Remote Sensing Data. In 18th Confer-
ence on Climate Variability and Change. American
Meteorological Society. Paper P1.5, Altanta, GA, CD-
ROM.
Tenenbaum, J., de Silva, V., and Langford, J. (2000).
A Global Geometric Framework for Nonlinear Di-
mensionality Reduction. Science, 290(22 December
2000):2319–2323.
Thompson, D. W. J. and Wallace, J. M. (2000). Annular
Modes in the Extratropical Circulation. Part I: Month-
to-Month Variability. Journal of Climate, 13(5):1000–
1016.
Von Storch, H. and Zwiers, F. W. (1999). Statistical Analy-
sis in Climate Research. Cambridge University Press.
Wallace, J. M., Smith, C., and Bretherton, C. S. (1992). Sin-
gular Value Decomposition of Wintertime Sea Surface
Temperature and 500-mb Height Anomalies. Journal
of Climate, 5(6):561–576.
ICSOFT 2006 - INTERNATIONAL CONFERENCE ON SOFTWARE AND DATA TECHNOLOGIES
202