CORTICAL OBJECT SEGREGATION AND CATEGORIZATION BY MULTI-SCALE LINE AND EDGE CODING

João Rodrigues, J. M. Hans du Buf

2006

Abstract

In this paper we present an improved scheme for line and edge detection in cortical area V1, based on responses of simple and complex cells, truly multi-scale with no free parameters. We illustrate the multi-scale representation for visual reconstruction, and show how object segregation can be achieved with coarse-to-fine-scale groupings. A two-level object categorization scenario is tested in which pre-categorization is based on coarse scales only, and final categorization on coarse plus fine scales. Processing schemes are discussed in the framework of a complete cortical architecture.

References

  1. Bar, M. (2003). A cortical mechanism for triggering topdown facilitation in visual object recognition. J. Cogn. Neuroscience, (15):600-609.
  2. Bar, M. (2004). Visual objects in context. Nature Reviews: Neuroscience, 5:619-629.
  3. Berson, D. (2003). Strange vision: ganglion cells as circadian photoreceptors. TRENDS in Neurosciences, 26(6):314-320.
  4. Deco, G. and Rolls, E. (2004). A neurodynamical cortical model of visual attention and invariant object recognition. Vision Res., (44):621-642.
  5. du Buf, J. (1993). Responses of simple cells: events, interferences, and ambiguities. Biol. Cybern., 68:321-333.
  6. du Buf, J. (1994). Ramp edges, Mach bands, and the functional significance of simple cell assembly. Biol. Cybern., 70:449-461.
  7. du Buf, J. and Fischer, S. (1995). Modeling brightness perception and syntactical image coding. Optical Eng., 34(7):1900-1911.
  8. Elder, J. and Zucker, S. (1998). Local scale control for edge detection and blur estimation. IEEE Tr. PAMI, 20(7):699-716.
  9. Fleet, D., Jepson, A., and Jenkin, M. (1991). Phase-based disparity measurement. CVGIP: Image Understanding, 53(2):198-210.
  10. Grigorescu, C., Petkov, N., and Westenberg, M. (2003). Contour detection based on nonclassical receptive field inhibition. IEEE Tr. IP, 12(7):729-739.
  11. Heath, M., Sarkar, S., Sanocki, T., and Bowyer, K. (2000). A robust visual method for assessing the relative performance of edge-detection algorithms. IEEE Tr. PAMI, 19(12):1338-1359.
  12. Heitger, F., Rosenthaler, L., von der Heydt, R., Peterhans, E., and Kubler, O. (1992). Simulation of neural contour mechanisms: from simple to end-stopped cells. Vision Res., 32(5):963-981.
  13. Hubel, D. (1995). Eye, brain and vision. Scientific American Library.
  14. Hupe, J., James, A., and Bullier, J. (2001). Feedback connections act on the early part of the responses in monkey visual cortex. J. Neurophysiol., 85(1):134-144.
  15. Itti, L. and Koch, C. (2001). Computational modeling of visual attention. Nature Reviews: Neuroscience, 2(3):194-203.
  16. Krüger, N. and Peters, G. (1997). Object recognition with banana wavelets. Proc. 5th Europ. Symp. Artificial Neural Networks, pages 61-66.
  17. Leibe, B. and Schiele, B. (2003). Analyzing appearance and contour based methods for object categorization. Proc. Int. Conf. Comp. Vision Pattern Recogn, Madison (Wisconsin), pages 409-415.
  18. Oliva, A., Torralba, A., Castelhano, M., and Henderson, J. (2003). Top-down control of visual attention in object detection. Int. Conf. Im. Proc., 1:253-256.
  19. Pessoa, L. (1996). Mach bands: how many models are possible? Recent experimental findings and modeling attemps. Vision Res., 36:3205-3227.
  20. Rasche, C. (2005). The making of a neuromorphic visual system. Springer.
  21. Rensink, R. (2000). The dynamic representation of scenes. Visual Cogn., 7(1-3):17-42.
  22. Riesenhuber, M. and Poggio, T. (2000). Cbf: A new framework for object categorization in cortex. 1st IEEE Int. Worksh. Biologically Motivated Computer Vision, Seoul (Korea), pages 1-9.
  23. Rodrigues, J. and du Buf, J. (2004a). Vision frontend with a new disparity model. Early Cogn. Vision Worksh., Isle of Skye (Scotland) www.cn.stir.ac.uk/ecovision-ws/.
  24. Rodrigues, J. and du Buf, J. (2004b). Visual cortex frontend: integrating lines, edges, keypoints and disparity. Proc. Int. Conf. Image Anal. Recogn., Springer LNCS 3211(1):664-671.
  25. Rodrigues, J. and du Buf, J. (2005a). Multi-scale cortical keypoint representation for attention and object detection. 2nd Iberian Conf. on Patt. Recogn. and Image Anal., Springer LNCS 3523:255-262.
  26. Rodrigues, J. and du Buf, J. (2005b). Multi-scale keypoints in V1 and face detection. 1st Int. Symp. Brain, Vision and Artif. Intell., Naples (Italy), Springer LNCS 3704:205-214.
  27. Smeraldi, F. and Bigun, J. (2002). Retinal vision applied to facial features detection and face authentication. Pattern Recogn. Letters, 23:463-475.
  28. van Deemter, J. and du Buf, J. (1996). Simultaneous detection of lines and edges using compound Gabor filters. Int. J. Patt. Recogn. Artif. Intell., 14(6):757-777.
  29. Zhaoping, L. (2003). V1 mechanisms and some figureground and border effects. J. Physiology, 97:503-515.
Download


Paper Citation


in Harvard Style

Rodrigues J. and M. Hans du Buf J. (2006). CORTICAL OBJECT SEGREGATION AND CATEGORIZATION BY MULTI-SCALE LINE AND EDGE CODING . In Proceedings of the First International Conference on Computer Vision Theory and Applications - Volume 2: VISAPP, ISBN 972-8865-40-6, pages 5-12. DOI: 10.5220/0001365600050012


in Bibtex Style

@conference{visapp06,
author={João Rodrigues and J. M. Hans du Buf},
title={CORTICAL OBJECT SEGREGATION AND CATEGORIZATION BY MULTI-SCALE LINE AND EDGE CODING},
booktitle={Proceedings of the First International Conference on Computer Vision Theory and Applications - Volume 2: VISAPP,},
year={2006},
pages={5-12},
publisher={SciTePress},
organization={INSTICC},
doi={10.5220/0001365600050012},
isbn={972-8865-40-6},
}


in EndNote Style

TY - CONF
JO - Proceedings of the First International Conference on Computer Vision Theory and Applications - Volume 2: VISAPP,
TI - CORTICAL OBJECT SEGREGATION AND CATEGORIZATION BY MULTI-SCALE LINE AND EDGE CODING
SN - 972-8865-40-6
AU - Rodrigues J.
AU - M. Hans du Buf J.
PY - 2006
SP - 5
EP - 12
DO - 10.5220/0001365600050012