SWARMTRACK: A PARTICLE SWARM APPROACH TO VISUAL TRACKING
Luis Antón-Canalís, Elena Sánchez-Nielsen, Mario Hernández-Tejera
2006
Abstract
A new approach to solve the object tracking problem is proposed using a Swarm Intelligence metaphor. It is based on a prey-predator scheme with a swarm of predator particles defined to track a herd of prey pixels using the intensity of its flavours. The method is described, including the definition of predator particles’ behaviour as a set of rules in a Boids fashion. Object tracking behaviour emerges from the interaction of individual particles. The paper includes experimental evaluations with video streams that illustrate the robustness and efficiency for real-time vision based tasks using a general purpose computer.
References
- Aloimonos, Y., 1993. Active Perception. Lawrence Erlbaum Assoc., Pub., N.J.
- Belongie, S., Malik, J., and Puzicha J., 2002. Shape matching and object recognition using shape context. In IEEE Trans. on Pattern Analysis and Machine Intelligence, 24(4):509-522.
- Besh, P. J., and McKay N., 1992. A method for registration of 3D shapes. In IEEE Trans. on Pattern Analysis and Machine Intelligence, 14(2):239-256.
- Blake, A., Curwen R., and Zisserman A., 1993. A framework for spatio-temporal control in the tracking of visual contours. In International Journal of Computer Vision, 11(2):127-145.
- Bonabeau, E., Dorigo, M., and Theraulaz, G., 2000. Swarm Intelligence: From Natural to Artificial Systems, Oxford University Press.
- Chen Y. amd Medioni G., 1992. Object modelling by registration of multiple range images. In Image and Vision Computing, 10(3):145-155.
- Comaniciu, D., Ramesh V., and Meer P., 2000. Real-time tracking of non-rigid objects using mean shift. In IEEE Conf. on Computer Vision and Pattern Recognition, volume II, pp. 142-149, Hilton Head, SC.
- Dorigo M., V. Maniezzo & A. Colorni, 1996. Ant System: Optimization by a colony of cooperating agents. IEEE Transactions on Systems, Man, and Cybernetics-Part B, 26(1):29-41.
- Eberhart, R. C. and Kennedy, J., 1995. A new optimizer using particle swarm theory. Proceedings of the Sixth International Symposium on Micromachine and Human Science, Nagoya, Japan. pp. 39-43.
- Guerra Cayetano, Hernández Mario, Domínguez Antonio, Hernández Daniel, 2005. A new approach to the template update problem. In Lecture Notes in Computer Science LNCS 3522, pp. 217-224.
- Isard, M., and Blake A., 1998. Condensation-conditional density propagation for visual tracking. In International Journal of Computer Vision, 29(1):5-28.
- Kass, M., Witkin A., and Terzopoulos D. Snakes: active contour models. In Proc. 1st International Conference on Computer Vision.
- Kennedy, J. and Eberhart, R. C., 1995. Particle swarm optimization. In Proceedings of IEEE International Conference on Neural Networks, Piscataway, NJ. pp. 1942-1948.
- Matthews, I., Ishikawa, T., and Baker S., 2004. The template update problem. In IEEE Transactions on Pattern Analysis and Machine Intelligence, 26(6):810- 815.
- Parra, C., Murrieta-Cid, Devy, M., and Briot, M., 1999. 3-D Modelling and Robot Localization from Visual and Range Data in Natural Scenes. In Lecture Notes in Computer Science 1542, Springer Verlag, pp. 450-468.
- Parrish, Julia K. (Editor), William M. Hamner (Editor), 1997. Animal Groups in Three Dimensions: How Species Aggregate. Cambridge University Press.
- Pentland, A., 2000. Perceptual Intelligence. In Communications of ACM, 43(3):35-44.
- Reynolds, C. W., 1987. Flocks, Herds, and Schools: A Distributed Behavioural Model. In Computer Graphics, 21(4) (SIGGRAPH 7887 Conference Proceedings) pp. 25-34.
- Reynolds, J., 1998. Autonomous underwater vehicle: vision system. PhD thesis, Robotic Systems Lab. Department of Engineering. Australian National University Canberra, Australia.
- Rucklidge W. J., 1996. Efficient Visual Recognition Using the Hausdorff Distance. In Lecture Notes in Computer Science, nº 1173, Springer-Verlag, NY.
- Sánchez-Nielsen Elena, Hernández-Tejera Mario, 2005a. A fast and accurate tracking approach for automated visual surveillance. In 39th IEEE International Carnahan Conference on Security Technology, pp. 113-116.
- Sánchez-Nielsen Elena, Hernández-Tejera Mario, 2005b. A heuristic search based approach for moving objects tracking. In 19th International Joint Conference on Artificial Intelligence (IJCAI-05), pp. 1736-1737.
- Turk, M., 2004. Computer Vision in the Interface. In Communications of the ACM, 47(1): 61-67.
- Tyng-Luh Liu, Hwan-Tzong Chen, 2004. Real-Time tracking using trust-region methods. In IEEE Transactions on Pattern Analysis and Machine Intelligence, 26(3):397-401.
- Yuille, A., Hallinan, P., and Cohen D., 1992. Feature extraction from faces using deformable templates. In International Journal of Computer Vision 8(2):99-112.
Paper Citation
in Harvard Style
Antón-Canalís L., Sánchez-Nielsen E. and Hernández-Tejera M. (2006). SWARMTRACK: A PARTICLE SWARM APPROACH TO VISUAL TRACKING . In Proceedings of the First International Conference on Computer Vision Theory and Applications - Volume 2: VISAPP, ISBN 972-8865-40-6, pages 221-228. DOI: 10.5220/0001372002210228
in Bibtex Style
@conference{visapp06,
author={Luis Antón-Canalís and Elena Sánchez-Nielsen and Mario Hernández-Tejera},
title={SWARMTRACK: A PARTICLE SWARM APPROACH TO VISUAL TRACKING},
booktitle={Proceedings of the First International Conference on Computer Vision Theory and Applications - Volume 2: VISAPP,},
year={2006},
pages={221-228},
publisher={SciTePress},
organization={INSTICC},
doi={10.5220/0001372002210228},
isbn={972-8865-40-6},
}
in EndNote Style
TY - CONF
JO - Proceedings of the First International Conference on Computer Vision Theory and Applications - Volume 2: VISAPP,
TI - SWARMTRACK: A PARTICLE SWARM APPROACH TO VISUAL TRACKING
SN - 972-8865-40-6
AU - Antón-Canalís L.
AU - Sánchez-Nielsen E.
AU - Hernández-Tejera M.
PY - 2006
SP - 221
EP - 228
DO - 10.5220/0001372002210228