A NEW MULTISCALE, CURVATURE-BASED SHAPE REPRESENTATION TECHNIQUE FOR CONTENT-BASED IMAGE RETRIEVAL

JanKees van der Poel, Leonardo Vidal Batista, Carlos Wilson Dantas de Almeida

2006

Abstract

This work presents a new multiscale, curvature-based shape representation technique for planar curves. One limitation of the well-known Curvature Scale Space (CSS) method is that it uses only curvature zero-crossings to characterize shapes and thus there is no CSS descriptor for convex shapes. The proposed method, on the other hand, uses bidimentional→unidimentional→bidimentional transformations together with resampling techniques to retain the full curvature information for shape characterization. It also employs the correlation coefficient as a measure of similarity. In the evaluation tests, the proposed method achieved a high correct classification rate (CCR), even when the shapes were severely corrupted by noise. Results clearly showed that the proposed method is more robust to noise than CSS.

References

  1. Abbasi, S., Mokhtarian, F., and Kittler, J. (2005). Search for similar shapes in the squid system: Shape queries using image databases. World Wide Web, http://www.ee.surrey.ac.uk/ Research/VSSP/imagedb/demo.html.
  2. Abbasi, S., Mokhtarian, F., and Kittler, J. V. (2000). Enhancing CSS-based shape retrieval for objects with shallow concavities. Image and Vision Computing, 18(3):199-211.
  3. Batista, L. V. and Meira, M. M. (2004). Texture classification using the Lempel-Ziv-Welch algorithm. In Proceedings of the 17th Brazilian Symposium on Artificial Intelligence, pages 444-453, Sa˜o Luís, Maranha˜o, Brazil.
  4. Daoudi, M. and Matusiak, S. (2000). Visual image retrieval by multiscale description of user sketches. Journal of Visual Languages and Computing, 11(3):287-301.
  5. Davies, E. R. (1997). Machine Vision: Theory, Algorithms, Practicalities. Academic Press, 1st edition.
  6. de Almeida, C. W. D., v. d. Poel, J., Batista, L. V., and de Amorim, H. L. E. (2005). Análise de Formas Baseada no Método da Curvature Scale Space para Tumores de Caˆncer de Mama. In Proceedings of the Brazilian Computer Society - SBC - WIM 2005, pages 1-4. Brazilian Computer Society - SBC.
  7. Dudek, G. and Tsotsos, J. K. (1997). Shape representation and recognition from multiscale curvature. Computer Vision and Image Understanding, 68(2):170-189.
  8. Freeman, H. and Saaghri, A. (1978). Generalized chain codes for planar curves. In Proceedings of the 4th International Joint Conference on Pattern Recognition, pages 701-703.
  9. Haralik, R. M. and Shapiro, L. G. (1992). Computer and Robot Vision. Vol. I. Addison-Wesley, Reading, MA.
  10. Junior, R. M. C. and da Costa, L. F. (1998). Towards effective planar shape representation with multiscale digital curvature analysis based on signal processing techniques. Pattern Recognition, 29(9):1559-1569.
  11. Kauppinen, H., Seppanen, T., and Pietikainen, M. (1995). An experimental comparison of autoregressive and Fourier-based descriptors in 2d shape classification. IEEE Trans. Pattern Anal. Mach. Intell., 17(2):201- 207.
  12. Loncaric, S. (1998). A survey of shape analysis techniques. Pattern Recognition, 31(8):983-1001.
  13. Mokhtarian, F. (1995). Silhouette-based isolated object recognition through Curvature Scale Space. IEEE Trans. Pattern. Anal. Mach. Intell., 17(5):539-544.
  14. Mokhtarian, F. and Abbasi, S. (2002). Shape similarity retrieval under affine transforms. Pattern Recognition, 35(1):31-41.
  15. Mokhtarian, F., Abbasi, S., and Kittler, J. (1996a). Robust and efficient shape indexing through Curvature Scale Space. In Proceedings of British Machine Vision Conference, pages 53-62.
  16. Mokhtarian, F., Abbasi, S., and Kittler, J. V. (1996b). Efficient and robust retrieval by shape content through Curvature Scale Space.
  17. Mokhtarian, F. and Bober, M. (1998). Curvature Scale Space Representation: Theory, Applications and MPEG-7 Standardisation. Springer, 1st edition.
  18. Mokhtarian, F. and Mackworth, A. K. (1986). Scale based description and recognition of planar curves and twodimensional shapes. IEEE Trans. Pattern. Anal. Mach. Intell., 8(1):34-43.
  19. Mokhtarian, F. and Mackworth, A. K. (1992). A theory of multiscale, curvature-based shape representation for planar curves. IEEE Trans. Pattern. Anal. Mach. Intell., 14(8):789-805.
  20. Niblack, W., Barber, R., Equitz, W., Flickner, M., Glasman, E., Petkovic, D., Yanker, P., Faloutsos, C., and Taubin, G. (1993). The QBIC project: querying images by content using color, texture and shape. In Proceedings of the SPIE - The International Society for Optical Engineering, volume 1908, pages 173-187.
  21. Pavlidis, T. (1980). Algorithms for shape analysis of contours and waveforms. IEEE Trans. Pattern Analysis and Machine Intelligence, 2(4):301-312.
  22. Persoon, E. and Fu, K. S. (1977). Shape discrimination using Fourier descriptors. IEEE Transactions on Systems, Man and Cybernetics, SMC-7(3):170-179.
  23. Pomerantz, J. R., Sager, L. C., and Stoever, R. J. (1977). Perception of wholes and of their component parts: some configural superiority effects. Journal of experimental psychology, 3(3):422-435.
  24. Tieng, Q. and Boles, W. W. (1997). Recognition of 2d object contours using the wavelet transform zerocrossing representation. IEEE Trans. Pattern Anal. Mach. Intell., 19(8):910-916.
  25. Yang, H. S., Lee, S. U., and Lee, K. M. (1998). Recognition of 2d object contours using starting-point-independent wavelet coefficient matching. Journal of Visual Communication and Image Representation, 9:171-181.
  26. Zahn, C. and Roskies, R. (1972). Fourier descriptors for plane closed curves. IEEE Transactions on Computers, C-21:269-281.
  27. Zhang, D. and Lu, G. (2001). Content-based shape retrieval using different shape descriptors: A comparative study. In Proc. of IEEE International Conference on Multimedia and Expo (ICME2001), pages 317- 320, Tokyo, Japan.
Download


Paper Citation


in Harvard Style

van der Poel J., Vidal Batista L. and Wilson Dantas de Almeida C. (2006). A NEW MULTISCALE, CURVATURE-BASED SHAPE REPRESENTATION TECHNIQUE FOR CONTENT-BASED IMAGE RETRIEVAL . In Proceedings of the First International Conference on Computer Vision Theory and Applications - Volume 1: VISAPP, ISBN 972-8865-40-6, pages 401-406. DOI: 10.5220/0001372304010406


in Bibtex Style

@conference{visapp06,
author={JanKees van der Poel and Leonardo Vidal Batista and Carlos Wilson Dantas de Almeida},
title={A NEW MULTISCALE, CURVATURE-BASED SHAPE REPRESENTATION TECHNIQUE FOR CONTENT-BASED IMAGE RETRIEVAL},
booktitle={Proceedings of the First International Conference on Computer Vision Theory and Applications - Volume 1: VISAPP,},
year={2006},
pages={401-406},
publisher={SciTePress},
organization={INSTICC},
doi={10.5220/0001372304010406},
isbn={972-8865-40-6},
}


in EndNote Style

TY - CONF
JO - Proceedings of the First International Conference on Computer Vision Theory and Applications - Volume 1: VISAPP,
TI - A NEW MULTISCALE, CURVATURE-BASED SHAPE REPRESENTATION TECHNIQUE FOR CONTENT-BASED IMAGE RETRIEVAL
SN - 972-8865-40-6
AU - van der Poel J.
AU - Vidal Batista L.
AU - Wilson Dantas de Almeida C.
PY - 2006
SP - 401
EP - 406
DO - 10.5220/0001372304010406