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Abstract. Model Transformations constitute a key component in the evolution 
of Model Driven Software Development (MDSD). MDSD tools base their full 
potential on transformation specifications between models. Several languages 
and tools are already in production, and OMG's MDA is currently undergoing a 
standardization process of these specifications. In this paper, we present 
Atomic Transformation Code (ATC), an imperative low-level model transfor-
mation language which decouples user transformation languages from the un-
derlying transformation engine. Therefore work invested on this engine is pro-
tected against variations on the high-level transformation languages supported. 
This approach can ease the adoption of QVT and other language initiatives. 
Also it provides MDA modeling tools with a valuable benefit by supporting the 
seamless integration of a variety of transformation languages simultaneously. 

1 Introduction 

In the past few years, Model Driven Software Development, MDSD has successfully 
positioned as one of the most promising strategies in the future of software engineer-
ing [3]. OMG’s MDA [2, 7] is a MDSD approach to software development based on 
models and aimed to provide automation through the various phases in the software 
development process lifecycle. It follows several standards, which include MOF [9] 
for describing metamodels, UML [10] for systems modeling and XMI [11], which 
can describe UML models in the XML format and promote tools’ interoperability. 

Model transformations in particular allow MDA to achieve automatic model evolu-
tion and code generation, and to generally increase productivity in software systems 
development. Languages to express these transformations have been devised and both 
commercial and open-source supporting tools capable of performing these activities 
have been released and are already used in production. 

The MOF 2.0 Query, Views and Transformations specification, QVT [8] is par-
ticularly relevant to MDA, as it is an attempt to standardize the activities related to 
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automated transformations between models. This specification will define automatic 
ways to apply queries, obtain views and execute transformations on models. 

Experience gained during the development and handling of our transformation 
tool’s first version, the Business Object Adaptor, BOA [12], has helped us detect 
several problems that we have solved in our new environment, which is now based on 
metamodeling and elaborating transformations as opposed to the former procedure of 
performing transformations in a single, monolythic big step based on XSLT tem-
plates. 

The long-term goal we pursue is to develop a fully compliant MDA IDE, so the is-
sue of transformation standards affects us deeply. The topic we’ll discuss here is the 
ATC model transformation language. It was born with the aim of shielding our im-
plementation work against changes in the specifications of those supported transfor-
mation languages, which inevitably change over time. Now it serves as the low level 
ground upon which higher-level languages, including the ones that are to become 
standards, will be integrated in our framework. 

This paper is structured as follows: Section 2 briefly outlines the main characteris-
tics of the latest QVT-Merge group standard proposal. Section 3 details ATC and its 
main components. Section 4 shows an ATC transformation syntax example. Section 5 
further discusses ATC issues. In Section 6 related and future work are presented. We 
end with the conclusions in section 7. 

2 QVT-Merge Submission v2.0 

In 2002, OMG opened the QVT standardization process with the publication of MOF 
2.0 QVT-RFP. As many as 8 proposals were submitted by different organizations and 
companies during the subsequent two years [6]. In time these organizations gradually 
converged into one single group, known as QVT-Merge. When the third review of 
this group’s proposal (version 2.0) [13] was published, the latest to date, the group 
was already backed by almost every previous submitter in an effort to speed up the 
standardization process. At the time of this writing, this third review of the submis-
sion of the QVT-Merge group has become the only proposed candidate for the future 
QVT standard and it is expected that the final QVT standard will quite resemble, or at 
least be derived from this proposal, so here we show some of its main features. 

2.1 QVT-Merge Layers and Languages 

The QVT-Merge proposal covers a thorough specification of three transformation 
languages. The Relations and Core languages are declarative, and the Operational 
Mappings is imperative. 

The specification contains the abstract and concrete syntaxes and the semantics of 
the three languages. Their detailed metamodels are shown in UML class diagram 
notation, and concrete syntaxes are described in EBNF. Hybrid collaboration between 
the imperative and declarative languages is also specified, along with supporting 
mechanisms for black-box invocations (see figure 1). 
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The proposal describes steps to convert Relations instances into equivalent Core 
syntaxes, which are lower-level. The idea behind this seems to be that compatible 
tools need only interpret transformation definitions written in Core, as those specified 
in Relations could be supported by compiling them to an analogous Core syntax. 

 
 
 
 
 
 
 

 
 

Fig. 1. Description of the QVT-Merge Languages. 

3 Introducing the ATC Language 

Usually there is no freedom in the election of transformation languages inside tools, 
since it’s hard if not impossible to use any other than the one they come with by de-
fault. This also means that while MDA consolidates a QVT standard, tools that opt to 
give it support are expected to face a rather high amount of refactoring in some cases. 

Our primary goal is to provide a tool based as much as possible on industry stan-
dards. This is why the pending QVT standard has become a serious problem for us, as 
the election of supported transformation languages at release time is unclear. 

In the meantime we’ve focused on coding parts that are not affected by the final set 
of supported languages selected. For instance, the implementation of the lowest-level 
model transformation mechanisms, and on the establishment of a management infra-
structure around models and metamodels. This was the first part of the work and what 
has emerged from it is ATC and its related transformation engine. 

ATC (Atomic Transformation Code) is a general purpose model transformation 
language designed to operate at the lowest possible level of abstraction, so it is a 
somewhat harsh, verbose language. Above ATC, those higher-level transformation 
languages subject to receive support in our environment, will be accommodated 
through compilation. They are channelled and integrated into our framework to reach 
the ATC underlying transformation engine, named Virtual Transformation Engine 
(VTE) by being parsed and compiled into a set of equivalent ATC instances. This is 
why ATC must be Turing complete in the lax sense. 

The engine VTE was created with the sole purpose of understanding and executing 
ATC instances, which carry information about how to transform models, and it is 
already being applied successfully in several projects. 

There’s currently an implementation of ATC and VTE in Java over Eclipse and the 
Eclipse Modeling Framework (EMF) [4] platforms. Its architecture is depicted in 
figure 2. Metamodels in this environment are described in terms of the EMF meta-
metamodel, named Ecore, and equivalent to MOF. 
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Fig. 2. Architecture layering of a particular transformation environment involving ATC. 

3.1 Elements of a Transformation Instance 

An ATC transformation consists mainly of: 

− an arbitrary number of parameters which represent the participant models, 
− identifiers for their related metamodels, 
− a set of functional operations that store a hierarchy of semantic objects,  
− ATC atoms, the semantic objects in question, each with its own runtime state 

Model parameters for a transformation can be read-only, modifiable or created 
from scratch. Any sort of configuration is supported, such as a single existing model 
to be modified, or a new one to be created from scratch, one-to-one or many-to-many 
configurations, and anything that goes in-between. 

Execution starts with the transformation’s main operation call. Like every other 
ATC functional operation, main contains a body filled with atoms arranged sequen-
tially. Some atom types are designed to hold others inside, so finally we get a hierar-
chy of objects representing the whole ATC transformation information. Therefore it 
is possible to base the persistence of an ATC transformation as a model serialization, 
for instance, in an XMI format file, just like EMF does. Interoperability of ATC in-
stances with other tools will be granted as long as XMI compatibility is guaranteed. 

Atoms check their state when executed to properly carry out their duties. For in-
stance, state information often tells the engine which model fragments are to be proc-
essed. Each atom represents a kind of indivisible byte code with a minimum degree of 
abstraction, which is why we give it the atomicity condition. 

3.2 Language Description 

Currently the ATC metamodel contains over one hundred elements among enumera-
tions, data types and classes. As it is impossible to discuss them all here, we’ll sum-
marize a classification of the ATC element types. 
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ATC Expressions.  A class identified as an atom type represents a particular atomic 
transformation semantic unit. Each atom type inherits from a base class named Ex-
pression, which contains an abstract method with the following signature: 

AtcExpression act(TransformationContext tc) 

in the reference VTE implementation, which encloses the particular semantic infor-
mation that makes atom types distinct from each other. It usually comprises no more 
than twenty lines of code. The tc parameter keeps track of contextual information, 
which includes the local variable registry, the calling stack, as well as parameters and 
additional runtime information the engine needs to execute the transformation accord-
ingly. 

Execution Flow.  A list of expressions related with the execution flow include, but is 
not limited to: AssignVars, Block, ExceptionThrow, FlowOpReturn, ForEach, GetOb-
jectsOfType, If, InvokeOp, InvokeTransformation, While. For instance, a Block atom 
simply encloses a list of atoms to be executed sequentially. ForEach takes a data 
collection as source, usually containing model elements, and traverses it to apply 
certain actions (which can in turn be an InvokeOp or a Block carrying further atoms). 
FlowOpReturn works similar to a return statement but its effect on execution flow is 
indirect. 

Model Transformation.  Atom types dealing with model handling and modification 
include: CloneModelObject, CreateDataType, CreateModelObject, CreateModel, 
GetStructuralFeature, SetStructuralFeature, and those that deal with the contents of 
lists or other collection types, which are relevant for attributes with multiplicity > 1. 

Query and Pattern Matching.  Atom types for queries provide us with means to 
organize data on models and reach particular model types: GetAllModelElements, 
GetObjectsOfType, GetModelExtent. The last one delivers the root elements that form 
a model fragment. Its state information includes the local variable identifier that refers 
to the piece of model to be queried. Pattern matching is performed explicitly in ATC. 
It can be achieved if we have means to apply reflectivity over model elements. ATC 
comes with IsOfType, which can be programmed to either perform exact type match 
or to detect subclasses of a particular model type. 

ATC Specific Types.  ATC comes with: Bool, Float, Int, String. Types in ATC also 
subclass Expression, so their instances are also atoms, and as such, can become the 
return value of an atom’s act execution. String atoms come enhanced to support com-
mon string operations. Among them we find upperization of selective parts, length 
delivery and substring support. Null is a special ATC type that does nothing on its 
own but can help us detect null assignments in local variables. 

Arithmetic and Logical Expressions.  Many atom types are built around the ATC 
specific types. Most of them give support to arithmetics: Add, Subtract, Multiply, 
Divide and Modulus, and logics: And, Or, XOr, Negate, Equals. These atoms deal 
transparently with both the ATC types and the primitive types of the native language 
in which the engine is programmed. Thanks to the Expression nature of ATC types 
and this transparency, these operations can be chained to provide a single final result 
from a group of combined operations without having to store partial results. 
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There are still other metamodel elements left, like those that are directly related 
with the transformation itself: Transformation, ModelParameter, Metamodel, ... 

4 Transformation Examples 

We have built a compiler for the Operational Mappings language, which is currently 
quite mature. Certain issues in its EBNF definition and several ambiguities found in 
its syntax and semantics specification have been sorted out. Future modifications 
made to the language will be incorporated in the compiler so it adjusts its output ac-
cordingly. Obsolete ATC instances will be recompiled. As long as the VTE engine 
remains unmodified, any other high-level language already supported gets unaffected. 

In this section, two small pieces of the Encapsulation transformation are presented 
both in the QVT-Merge Operational Mappings language and its equivalent ATC 
instances. To make things more interesting, we’ll show the ATC transformation defi-
nition version from the beginning. 

4.1 Mapping Definition 

Text in Operational Mappings. 
mapping inout Property::privatizeAttribute () { 
    visibility := "private"; 
} 

ATC Equivalent.   
<atc:AtcTransformation xmi:version="2.0" 
   [...] xmlns:atc="http://boa.opencanarias.com/atc/0.5" 
name="Encapsulation"> 
 
  <metamodels name="UML2"> 
    <packagesNsURI>http://mset.opencanarias.com/uml2/1.0.0/UML2 
    </packagesNsURI> 
  </metamodels> 
 
  <modelParameters name="uml2Model" dirKind="inout" 
    metamodelId="UML2"/> 
 
  main="//@ownedOperations.7"> 
 
  <ownedOperations xsi:type="atc:AtcMapping" 
    name="privatizeAttribute"> 
    <formalParameters xsi:type="atc:AtcMappingParameter" 
      name="a" dirKind="inout" typeQualifNm="UML2::Property"> 
    </formalParameters> 
    <mBody xsi:type="atc:AtcBlock"> 
        <atcAtoms xsi:type="atc:AtcCreateDataType" 
          packageNsURI="http://mset.opencanarias.com/ 
             uml2/1.0.0/UML" dataTypeNm="VisibilityKind" 
          sourceString="private" targetId="localVar1"/> 
        <atcAtoms xsi:type="atc:AtcSetStructuralFeature" 
           ObjectId="a" stFNm="visibility" 
           featureVarId="localVar1"/> 
    </mBody> 
  </ownedOperations> 
  <ownedOperations [...] 
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Explanation. The first example consists of the complete definition of a small map-
ping, where an enumerated type is generated and assigned to a UML2 attribute of a 
Property instance, which represents the contextual parameter for the mapping call. 

To keep things clean we have omitted the Operational Mappings’ trace information 
that stores bindings created between model objects during execution, and that can be 
queried later on during the same transformation. This information is embedded ex-
plicitly in the ATC transformation instances during compilation. 

Metamodels are defined outside the transformation block. A metamodel is made up 
of a list of URIs. They refer to Ecore packages in our case. In this example only the 
URI of our UML 2 metamodel is present. Model parameters for the transformation 
follow. We can identify the main operation as being the operation number 7. 

Finally a full list with the transformation functional operations follows. Only pri-
vatizeAttribute is shown here. Its type is AtcMapping. During compilation, the con-
textual parameter has lost the privileged position it held in Operational Mappings to 
become an ordinary parameter, the first in the list. The visibility assignment, which 
spans a line in Operational Mappings, has ended up being a Block containing two 
ATC atoms. None of them acts as a container for other atoms. 

The first atom obtains a private instance of the VisibilityKind enumeration type. 
The second atom will assign it to the visibility attribute of the Property instance, 
whose name identifier is ‘a’. The ‘localVar1‘ variable identifier is used as a key in a 
map of Java variables in order to store its associated value. It is the link established 
between both atoms. The behaviour of AtcSetStructuralFeature is straightforward. 

4.2 Mapping Call 

Text in Operational Mappings.   
{ 
    var attrs := c.ownedAttribute; 
    attrs->map privatizeAttribute(); 
} 

ATC Equivalent.    
<atcAtoms 
    xsi:type="atc:AtcGetStructuralFeature" 
      objectId="c" stFNm="ownedAttribute" 
      featureVarId="attrs"/> 
  <atcAtoms xsi:type="atc:AtcForEach" 
    collectionId="attrs" elementId="localVar12"> 
    <forBody xsi:type="atc:AtcBlock"> 
      <atcAtoms xsi:type="atc:AtcInvokeOp" 
        op="//@ownedOperations.0"> 
          <actualParameterIds>localVar12</actualParameterIds> 
      </atcAtoms> 
   [...] 

Explanation.  The first atom we see here, which is equivalent to the first line in the 
Operational Mappings sample, defines a new variable, ‘attrs’, which represents the 
list of properties belonging to a given class whose identifier is ‘c’. In the next line a 
hidden traversal syntax takes place, so that the mapping invocation is produced over 
every element in attrs. This syntax becomes explicit in ATC, as can be seen by the 
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‘localVar12’ temporary variable managed by the ForEach atom. The body for this 
ForEach is merely the AtcInvokeOp invocation of the operation number 0, which 
happens to be privatizeAttribute. ‘localVar12’ is the actual parameter identifier. 

5 ATC Considerations 

Imperative Nature.  Declarative descriptions are often naturally found in transfor-
mation environments. Mappings are established between domain artifacts, and so on. 
But at the end an algorithmic approach must be followed to reconcile all this informa-
tion in order to be executed by a machine, so our assumption is that it will be possible 
to produce ATC explicit imperative representations of those algorithmic semantics. 
The hard task of evaluating declarative expressions is left to the language compiler. 
But even if the ATC-based engine is unable to match the execution speed of a direct 
language supporting engine, we’ll have sacrificed performace in favor of a flexible 
design 

Multi-Language Tools.  The capability for simultaneous support of different trans-
formation languages in the same tool is very interesting, provided it doesn’t bloat its 
responsiveness and general performance. As there is no such language capable of 
solving transformation problems in all kinds of situatios with complete flexibility, 
power and ease of use, the layering principle allows focusing on the integration of a 
wide range of high level languages at the hands of the architect in the same develop-
ment environment. Future adoption of new emerging languages will also be possible. 

This diversity opens up the possibility for the joint collaboration of several trans-
formation languages in the sense of Domain Specific Languages (DSL) [5]. Reuse of 
legacy transformation languages, which in turn can see their longevity increased, is 
also interesting. Entire repositories of transformation definitions can be translated into 
ATC versions and related metamodels created to assist them. This has to do with the 
added value the framework earns each time new EMF metamodels are provided and 
ATC transformations and transformation language compilers produced. 

ATC Unfolding to Java Files.  Previously ATC execution performance was penal-
ized because of transformations being model objects to be traversed and the act 
method having to be invoked for each executed atomic unit. Other issues, such as 
ATC’s specific types operation handling, like addition, primitive type assignment, 
and several ones like variable declaration, comparison or execution flow control 
checks, came into play to further introduce overhead and slow things down. 

Recently we have started a new version for VTE. To keep efficiency at maximum, 
one last compilation step is now performed, this time to unfold ATC XMI instances 
into native plain Java code. Each functional operation is analyzed and the code asso-
ciated to each of its composing atoms’ types already available in the previous engine 
version is sequentially dumped inside a method that represents the entire original 
operation. Specific arrangements are made for each different processed atom type, 
and loose pieces of code are glued together inside the overall method. The surround-
ing class becomes the transformation itself. References to metamodels are automati-
cally embedded in the code. 
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The outcome of this plain java class matches the structural aspect of the original 
transformation definition, That is, as many methods are defined in the class as func-
tional operations are present in the original transformation instance. The transforma-
tion context is treated slightly different now. To spread useful runtime information it 
just becomes an explicit additional parameter in every operation (including main). 

This new mechanism not only considerably helps in boosting performance, but 
now it’s easier to promote blind transformation and operation invocations (black-
box), once a contract has been established concerning how to access the entrance 
point of the transformation and to choose models as actual parameters. 

Support for QVT Requirements.  We won’t discuss here issues about supporting 
QVT recommended features such as traceability, bidirectionality and incrementality 
in our framework. These are still open areas for investigation in our case, but we 
expect the ATC language to be agnostic of these features, as support can be expressed 
explicitly in its transformation instances (similar to the trace classes infrastructure for 
Operational Mappings) or integrated in the environment through the VTE engine or 
in parallel with it. This helps keep the language structure focused and compact. 

6 Related and Future Work 

Following the same low-level principle discussed for ATC, another transformation 
language, ATL [1], has recently added an imperative virtual machine to its layering 
architecture with a similar abstraction level but different treatment of core types. 
Similar examples include the QVT-Merge language pair Relations vs Core. Concern-
ing transformation representations as model objects, the QVT-Partners [14] group has 
an open transformation implementation based on the composition of semantical units. 

As future work, it will be interesting to see how ATC is able to deal with the Rela-
tions and Core languages. A compiler for Core will soon start development. We also 
expect support for other languages to be developed through other research groups. 

For the moment, we don’t plan to port ATC and VTE to other underlying tech-
nologies aside from EMF and Java. We expect to be able to apply the MDA para-
digm, so when the ATC metamodel matures to include semantics (it is currently 
hardwired in the engine), versions for other underlying technologies (such as MDR, 
or C++) will automatically be generated. Other future challenges include exploring 
migration issues about the integration of ATC and VTE implementations in foreign 
MDA tools. 

7 Conclusions 

In this paper we have detailed the ATC model transformation language, its composi-
tion and set of instructions, and its underlying execution mechanisms. ATC is a low-
level, imperative language designed for model transformations and thus, not quite 
user-friendly. We’ve also introduced VTE, its supporting transformation engine, 
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which doesn’t understand any other language and to which a plain java compilation 
process has recently been added to enhance runtime performance. 

We’ve discussed the role of ATC in the transformation tools as an intermediate 
layer that assists in the integration of the common abstract transformation languages. 
Integration of each language is achieved by means of a compilation module that pro-
duces semantically equivalent instances in the ATC syntax. 

We consider the current QVT-Merge standard proposal a reference regarding high-
level transformation languages suitable for common use by transformation engineers. 
Here its architecture has been depicted. A compiler for ATC specifically tailored to 
translate Operational Mappings instances is already available. Two examples show 
what ATC instances look like and how they compare to their equivalent high-level 
language original syntax. We’ve also presented several other transformation lan-
guages each sharing certain similarities with ATC or with the transformation engine 
design. 

We’ve described how the layered arrangement brings benefits to the unification of 
a transformation tools’ architecture, with a single central engine able to give support 
to many simultaneous languages. Newer and older languages can coexist in the same 
environment and even complement each other. Finally this layering can help tools in 
their adoption of the upcoming QVT standard. 
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