
4.  Babcock, B., Datar, M., Motwani, R., O'Callaghan, L.: Maintaining Variance and k-
Medians over Data Stream Windows, Proceedings of the 2003 ACM Symposium on Prin-
ciples of Database Systems (PODS 2003) (2003) 
5.  Domingos, P., Hulten, G.: A General Method for Scaling Up Machine Learning Algorithms 
and its Application to Clustering, Proceedings of the Eighteenth International Conference 
on Machine Learning, Williamstown, MA (2001) 106-113 
6.  Gaber, M. M., Krishnaswamy, S., Zaslavsky, A.: Cost-Efficient Mining Techniques for 
Data Streams, Australasian Workshop on Data Mining and Web Intelligence (DMWI2004), 
Dunedin, New Zealand (2004) 
7.  Gollapudi, S., Sivakumar, D.: Framework and algorithms for trend analysis in massive 
temporal data sets, presented at Thirteenth ACM conference on Information and knowledge 
management, Washington, D.C., USA (2004) 
8.  Guha, S., Mishra, N., Motwani, R., O’Callaghan, L.: Clustering data streams, in Proc. 
FOCS, (2000) 359-366 
9.  Healey, C. G., Booth, K. S., Enns, J.: Visualizing Real-Time Multivariate Data Using 
Preattentive Processing, ACM Transactions on Modeling and Computer Simulation 5, 3 
(1995) 190-221. 
10. Horovitz, O., Krishnaswamy, S., and Gaber, M, M.: A Fuzzy Approach for Interpretation 
and Application of Ubiquitous Data Stream Clustering, Accepted for publication in the Pro-
ceedings of the Workshop on Knowledge Discovery in Data Streams held in conjunction 
with the 16th European Conference on Machine Learning (ECML) and the 9th European 
Conference on Principles and Practice of Knowledge Discovery in Databases (PKDD), 3-7 
October, Porto, Potugal, Springer Verlag Lecture Notes in Computer Science (LNCS). 
(2005) 
11. Kargupta, H., Park, B., Pittie, S., Liu, L., Kushraj, D., Sarkar, K.: MobiMine: Monitoring 
the Stock Market from a PDA. ACM SIGKDD Explorations, Volume 3, Issue 2. ACM 
Press (2002) 37-46 
12. Kargupta, H., Bhargava, R., Liu, K., Powers, M., Blair, P., Bushra, S., Dull, J., Sarkar, K., 
Klein, M., Vasa, M., Handy, D.: VEDAS: A Mobile and Distributed Data Stream Mining 
System for Real-Time Vehicle Monitoring. Accepted for publication in the Proceedings of 
the SIAM International Data Mining Conference, Orlando. (2004) 
13. Keim, D. A.: Information visualization and visual data mining. IEEE Transactions On 
Visualization And Computer Graphics, 8(1) (2002) 1-8 
14. Keim, D. A., Schneidewind, J., Sips, M.: CircleView: a new approach for visualizing time-
related multidimensional data sets. AVI 2004 (2004) 179-182 
15. Moskowitz, H., Burns, M., Fiorentino, D., Smiley, A., Zador, P.: Driver Characteristics and 
Impairment at Various BACs, Southern California Research Institute (2000) 
16. O'Callaghan, L., Mishra, N., Meyerson, A., Guha, S., Motwani, R.: Streaming-data algo-
rithms for high-quality clustering. Proceedings of IEEE International Conference on Data 
Engineering (2002) 
17. Wegman, E., Marchette, D.: On some techniques for streaming data: A case study of Inter-
net packet headers, Journal of Computational and Graphical Statistics, 12(4) (2003) 893-
914 
18. Wong, P. C., Foote, H., Adams, D., Cowley, W., Thomas, J.: Dynamic Visualization of 
Transient Data Streams, IEEE Symposium on Information Visualization (2003) 
19. Zaki, M. J.: Online, Interactive and Anytime Data Mining, guest editorial for special issue 
of SIGKDD Explorations, Volume 3, Issue 2 (2002) i-ii 
38