
MODELING ARCHITECTURAL LEVEL REPAIR IN WEB
SERVICES

Francisco Moo-Mena 1,2 and Khalil Drira 1

1 Laboratoire d’Analyse et d’Architecture des Systèmes, 7 Av. du Colonel Roche, 31077 Toulouse, Cedex 04, France
2 Facultad de Matemáticas, Universidad Autónoma de Yucatán, Apartado Postal 172 Cordemex, 97110 Mérida, México

Keywords: Architecture model, Architecture reconfiguration, Web services, repair actions, UML.

Abstract: Failures during Web service execution may depend on a wide variety of causes, such as network faults, server
crashes, or application-related errors, such as unavailability of a requested Web service, errors in the orches-
tration or choreography of applications, missing data or parameters in an execution flow, or low Quality of
Service (QoS). Providing efficient solutions requires handling adaptability not only at the behavioral level, but
also at the architectural level. Most of existing standard solutions focus on the behavioral level using reconfig-
uration mechanisms. In this paper, we propose a model-based approach providing adaptability actions at the
architectural level. Typical architectural reconfiguration actions, such as duplication of services or substitution
of a non conforming service are introduced. An example is illustrated and discussed with respect to a running
example involving coordinated Web services.a.

aThis work has been funded by the IST WS-DIAMOND European project.

1 INTRODUCTION

In the WS-DIAMOND (Web service DIAgnosabil-
ity, MONitoring, and Diagnosis) project (IST, 2006),
methodologies and solutions are investigated to de-
sign and deploy self-healing Web Services. Namely,
Web services able to detect and repair anomalous
situations in the execution of distributed Web based
applications. WS-DIAMOND studies and develops
methodologies and solutions for the creation of self-
healing Web Services, able to detect anomalous situa-
tions, which may manifest as the inability to provide a
service or to fulfill Quality of Service (QoS) require-
ments, and to recover from these situations. To re-
cover from these situations, various actions can be un-
dertaken, depending on where the fault has occurred.
In many cases, such actions lead to rearrangement or
reconfiguration of the architecture.

According to (Dashofy et al., 2002), the ability to
dynamically repair a system at runtime based on its
architecture requires several capabilities: (i) the abil-
ity to describe the current architecture of the system,
(ii) the ability to express all changes to the architec-

ture that will serve as a repair plan, (iii) the ability to
analyze the result of the repair to gain confidence that
the change is valid, and (iv) the ability to execute the
repair plan on a running system without restarting the
system.

Following a model-based development approach,
application scenarios are expressed at a conceptual
level, for example, by adapting UML diagrams. This
representation allows to reason about requirements
at a high level of abstraction, without considering
implementation-specific details. A conceptual model
of the architecture would allow an understanding of
the basic mechanisms, and their suitability for a cer-
tain task, at a non-technical level (Baresi et al., 2003).

The goal of this paper is to present actions for re-
configuration of QoS mismatches, and to propose a
model-based strategy to management and reconfigu-
ration of non conforming Web services applications.
The approach here proposed is based on reconfigura-
tion actions defined for different types of mismatches.
The QoS mismatches we deal with are at the architec-
tural level, so they involve reconfigurations actions,
such as addition and removal of services and connec-

240
Moo-Mena F. and Drira K. (2007).
MODELING ARCHITECTURAL LEVEL REPAIR IN WEB SERVICES.
In Proceedings of the Third International Conference on Web Information Systems and Technologies - Internet Technology, pages 240-245
DOI: 10.5220/0001280002400245
Copyright c© SciTePress

tions. In particular, we focus on mechanisms based
on adaptivity achieved through service duplication or
substitution. This model-based approach involves an
explicit partitioning between functional architectural
issues. In this sense, our first task involves represen-
tation of functional (applicative) aspects of architec-
tures by describing a structural specification (across
UML extensions) encompassing the functional de-
composition of a Web service application. And sec-
ondly, reconfiguration management is considered by
applying a set of transformation rules (as defined by
graph rewriting theory) in order to define reconfigu-
ration actions at the architectural level. In order to
facilitate the understanding of our proposal we apply
our idea to the context of a Cooperative Review appli-
cation.

The rest of the paper is organized as follows: sec-
tion 2 introduces our proposal. Section 3 depicts an
applicative sample of our approach. Section 4 de-
scribes research related to our work. And Section 5
presents conclusions and perspective of this work.

2 OUR APPROACH

2.1 Architectural Description

A first step consists in modeling of architectures rep-
resenting a Web service application. For this, some
model types are defined as follows:

• The Cooperative role represents a logical deploy-
ment unit associated to sites wherein participating
actors are connected. It may be that a Cooperative
role is identified in practice with a particular run-
time entity (i.e. Web service application server,
orchestration engine, etc.) but no correlation ex-
ists between Cooperative role and runtime entity
in general, so a Cooperative role can either cor-
respond to several runtime entities or a runtime
unit can match the services associated with sev-
eral Cooperative roles. The concept of Coopera-
tive role fulfills inherent needs in any Web service
application by distinguishing logical distribution
of sites hosting Web services. Specific Coopera-
tive role examples would be: “Author Site”, “Sup-
plier Site”, “TrackChair Site”, etc.

• The Service category represents a global and
common functionality offered by a set of Web ser-
vices distinguished by their class. Web services
belonging to the same Service category can be de-
ployed on one or more Cooperative roles. We
distinguish, for example, Service categories such
as “Travel Agency Management”, “Food Shop-

ping Management”, “Cooperative Review Man-
agement”, etc.

• The Service class refers to the functional behav-
ior offered by a particular type of Web service as a
basic logical unit associated to a Service category.
In a deployment scenario, a Service class repre-
sents a specific part of the business logic offered
by a Service category deployed into a Coopera-
tive role. For the sake of simplicity we consider
a unique Service class, of the same category, be-
ing deployed into the set of Cooperative roles. We
distinguish, for example, Service classes such as
“Booking Manager”, “Costumer Manager”, “Re-
viewing Manager”, etc.

A graphical notation is defined in order to repre-
sent static architectural specification of a Web service
application. This notation is based on issues defined
by the UML deployment diagram (OMG, 2005) and
extends it as shown in figure 1. This metamodel de-
fine each of the architectural types as extensions of the
Node metaclass. A relation of aggregation exists be-
tween the Cooperative role and the Service category
since the latter may be deployed on different Coop-
erative roles. As well, a relation of composition is
enabled between the Service category and the Service
class meaning the latter may only be deployed on a
unique Service category. Services (or Web services)
are defined (besides of the architectural types) by ex-
tending the Component metaclass.

uml20.deployments.Node

« Cooperative role »

name: String

« Service category »

name: String

« Service class »

name: String

« Service »

name: String

role: String

category: String

class: String

uml20.components.Component

*

1..* 1..*

1..*

1..* 1

1

+/required

uml20.components.Interface

uml20.compositestructures.Port

+/provided

0..* 0..*

1..*

Figure 1: Metamodel extending UML deployment view.

According to the proposed metamodel, the notions
of Cooperative Role, Service Category and Service
class are all represented by a Node symbol. A tag al-
lows to distinguish each element by its name. Depen-
dencies between these architectural elements are im-
plicitly represented by embedding each element into
its counterpart. As well, we use Communication paths
in order to represent interconnection at the Service
class level. Services and specific interactions between

MODELING ARCHITECTURAL LEVEL REPAIR IN WEB SERVICES

241

them are based on component metaclass as defined by
UML 2 (OMG, 2005). Each service is represented by
a component design, in addition to some tags remem-
bering dependencies with regard to the architectural
elements (Cooperative role, Service category and Ser-
vice class).

2.2 Basic Rule Definition

This step consists in the definition of dynamic archi-
tectures in order to represent reconfiguration actions.
To make it possible we define some basic rules based
on graph transformation. Definition of rules is merely
based on the basic model types. Namely, each rule
must involve either a Cooperative role, Service cate-
gory, Service class or a mixture of them into its spec-
ification. This strategy aims to provide some impor-
tant advantages such as: (i) definition of simpler and
generic rules, (ii) definition of more powerful rules,
as a single model type (Cooperative role, Service cat-
egory or Service class) generally involves multiple in-
stances of Web services.

In order to build basic rules we define a sim-
ple graph, where vertices represent Web services and
edges represent connections between Web services.
Each vertex of the graph is defined by:

WS(i,j,k,l) where :
i represents a Cooperative role,
j represents a Service category,
k represents a Service class, and
l represents the identifier of the WS.

In what follow we depict three basic rules which
involve some typical actions required to build recon-
figuration actions. In these rules, variables X,Y and
Z match graph vertices, where each vertex represents
one or more instances of Web services. These basic
rules are defined as follows:

Rule [name=R1](i,j,k,l,i',j',k',l')

Match Vertices:

 X with parameters i,j,k,l;

Add Vertices:

 Y with parameters i',j',k',l';

Rule [name=R2](i,j,k,l,i',j',k',l',i'',j'',k'',l'')

Match Vertices:

 X with parameters i,j,k,l;

 Y with parameters i',j',k',l';

 Z with parameters i'',j'',k'',l'';

Match Edges:

 X->Z, Z->X

Add Edges:

 Y->Z, Z->Y

Restriction Edges:

 Y->Z, Z->Y

• Rule R1 deals with addition of Web services. In
practice that means activation or deployment of
Web services instances.

Rule [name=R3](i,j,k,l)

Delete Vertices:

 X with parameters i,j,k,l;

• Rule R2 deals with addition of connections. A re-
striction is imposed as the connections between a
pair of elements must remain unique, so this rule
is only applicable if declared edges have no been
created previously, and

• Rule R3 deals with removal of elements and asso-
ciated connections. In practice removal could be
interpreted as deactivation of implied elements. It
must be noted due to parameters are associated to
model types each variable would instantiate sev-
eral elements (Web services instances and connec-
tions).

Based on this principles, for instance, a ba-
sic rule describing something like: “add Web ser-
vices with Service category = AuthorManagement”,
would be carried out by applying the Rule R1 with
X = WS(i=∗,j=AuthorManagement,k=∗,l=∗), where
“*” matches any value in all cases. That involves all
elements relied on this Service category, namely, the
Service classes and services.

2.3 Reconfiguration Actions

In order to model reconfiguration actions for a non
conforming Web service application, we use the ba-
sic rules aforementioned and define policies for their
right application. Namely, we establish an ordered
sequence of basic rules to enable architectural recon-
figuration actions such as duplication or substitution
of Web services.

• Duplication(or replication) involves addition of
services representing similar functionalities. This
aiming at improving load balancing between ser-
vices in order to better adapt, for instance, to QoS
requirements.

• Substitution encompasses redirection between
two services. Applying this action means the first
one is deactivated and relieved by the second one.

Hence, the Duplication and Substitution reconfig-
uration actions are defined as follows:

Duplication = R1R2

Substitution = R1R2R3

That means reconfiguration action of Duplication
implies the application sequence of Rule R1 and Rule
R2. And reconfiguration action of Substitution im-
plies the application sequence of Rule R1, Rule R2
and Rule R3.

WEBIST 2007 - International Conference on Web Information Systems and Technologies

242

3 ILLUSTRATION

This example illustrates the functioning of a common
collaborative activity addressing the problem of “re-
view process”. This problem has several instantia-
tions in different activity areas. In industrial activ-
ities such as engineering of complex and embedded
systems, the “design review” activity is known to be
as one of the most complex activities in aerospace
industry. The “cooperative review” application sce-
nario we study in the context of the WS-DIAMOND
project aims to support such activities. Most of the
defined services, parameters, actors and processes
are generic and may be applied to different domain-
specific review processes. In order to facilitate the un-
derstanding and the collaboration within our project,
we choose to instantiate the review process by the
well-known scenario of the review process in scien-
tific publishing activities. Namely, we consider the
specific case of the scientific conferences looking for
describing the automatic functioning of their different
steps within a service-oriented approach.

Several actors collaborate in order to accomplish
the various management tasks of the cooperative re-
viewing process. The different types of actors are
presented as follows: (i) the Conference Chair repre-
sents the principal actor in charge of organization of
the conference. (ii) The Track Chair has in charge to
manage a particular conference’s session, (iii) the Au-
thor represents each potential contributor to the dif-
ferent topics of the conference, (iv) the Reviewer is
an expert in one or more of the domains defined by
the different topics of the conference.

3.1 Architecture Description

For this example an architectural description is de-
picted in figure 2. This description involves:

• 4 Cooperative Roles: (i) AuthorSite considers par-
ticipant site for authors, (ii) ConfChairSite con-
siders participant site for conference Chairs, (iii)
TrackChairSite considers participant site for track
Chairs, (iv) ReviewerSite considers participant
site for reviewers.

• 3 Services Categories: (i) AuthorMgmt deals with
general functionality management regarding au-
thors, (ii) ConfMgmt deals with general func-
tionality management regarding conferences, (iii)
ReviewerMgmt deals with general functionality
management regarding reviewers.

• 7 Services Classes: (i) AuthorMgr defines spe-
cific functionality concerning authors, (ii) Con-
fInfoProv defines specific functionality concern-

ing information providing of conferences, (iii) Ap-
provalMgr defines specific functionality concern-
ing approval process of publications, (iv) Publish-
ingMgr defines specific functionality concerning
publishing management of proceedings, (v) Sub-
misMgr defines specific functionality concerning
submission management of papers, (vi) Review-
ingMgr defines specific functionality concerning
reviewing management of papers, (vii) Reviewer-
Mgr defines specific functionality concerning re-
viewers.

«Cooperative role»

ConfChairSite

«Service category»

ConfMgmt

«Cooperative role»

TrackChairSite

«Service category»

ConfMgmt

«Cooperative role»

AuthorSite

«Service class»

ApprovalMgr

«Service category»

AuthorMgmt

«Service class»

ConfInfoProv«Service class»

AuthorMgr

«Service class»

PublishingMgr

«Service class»

ReviewingMgr

«Service class»

SubmisMgr

«Cooperative role»

ReviewerSite

«Service category»

ReviewerMgmt

«Service class»

ReviewerMgr

Figure 2: Architecture of the Cooperative Review applica-
tion.

Several interactions, structured into activities, be-
tween Web services would be enabled on this appli-
cation. Some typical examples of these activities are:
(i) Conference Search Activity, (ii) Reviewers Search
Activity, (iii) Report Transmission, (iv) Author Noti-
fication, etc.

3.2 Application of Reconfig. Actions

In order to better illustrate effects due to application
of reconfiguration action we use a Left-Right style
(namely, each reconfiguration action is composed by
a left side and a right side). In the left side, we de-
scribe architectural elements (services and connec-
tions) as necessary to apply the rules. In the right
side, we describe architectural elements, as wished af-
ter application of the rules. In practice, architectural
changes yielded by passing from a state to another are
carried out by a set of atomic actions (like activation,
binding or deactivation of Web services and connec-
tions).

A first example illustrating reconfiguration actions
for the Cooperative Review application considers du-
plication of Web services. In fact, many reasons
would be behind decision for applying this action,
for instance, QoS mismatches as overhead, load bal-
ancing, low throughput, etc. As depicted in figure 3
it is possible that in any time many AuthorMgrServ
services try to address a same instance of ConfInfo-
ProvServ service, so it is pertinent to improve perfor-
mance by deploying new instances of the latter ser-

MODELING ARCHITECTURAL LEVEL REPAIR IN WEB SERVICES

243

vice. Hence, the duplication action is applied as de-
scribed in section 2.3 (R1R2).

For all Web services instances defined by vari-
ables X, Y, and Z; apply rules R1 and R2 with the
following parameters.

Rule X() Y() Z()
i=ConfChairSite i’=ConfChairSite

R1 j=ConfMgmt j’=ConfMgmt
k=ConfInfoProv k’=ConfInfoProv
l=* l’=new
i=ConfChairSite i’=ConfChairSite i”=*

R2 j=ConfMgmt j’=ConfMgmt j”=*
k=ConfInfoProv k’=ConfInfoProv k”=*
l’!=new l’=new l”=*

L

R

am1:AuthorMgrServ

« Service »

Cr=AuthorSite
Sct=AuthorMgmt
Scl=AuthorMgr

ci1:ConfInfoProvServ

« Service »

Cr=ConfChairSite
Sct=ConfMgmt
Scl=ConInfoProv

am1:AuthorMgrServ

« Service »

Cr=AuthorSite
Sct=AuthorMgmt
Scl=AuthorMgr

ci1:ConfInfoProvServ

« Service »

Cr=ConfChairSite
Sct=ConfMgmt
Scl=ConInfoProv

ci2:ConfInfoProvServ

« Service »

Cr=ConfChairSite
Sct=ConfMgmt
Scl=ConInfoProv

Figure 3: Applying duplication action.

A second example depicting reconfiguration ac-
tions for the Cooperative Review system deals with
application of the substitution action. Recurrent QoS
mismatches as Web services delivering a wrong ser-
vice, low throughput, or yet denial of service, would
carry the reconfiguration module to apply this kind of
reconfiguration action. As depicted in figure 4 it is
possible that the group of Web services related to the
same Service category get in any time a non conform-
ing state, so a pertinent and efficient way of repair-
ing this matters is by substituting all the Web services
concerned with this Service category (ConfMgmt). It
must be clear interactions between services involved
at the moment of applying the reconfiguration action,
must be taken into account in order to restore them
with the new instances of involved services. In this
example, this is the case between the AuthorMgrServ
service and the ConfInfoProvServ service, when ap-
plying the action of substitution as defined in section
2.3 (R1R2R3). Many other scenarios would be illus-
trated by assigning different values of variables con-
cerning each architectural type.

For all Web services instances defined by vari-
ables X, Y, and Z; apply rules R1,R2, and R3 with
the following parameters.

Rule X() Y() Z()
R1 j=ConfMgmt j’=ConfMgmt

l’=new
j=ConfMgmt j’=ConfMgmt i”=*

R2 j”=*
k”=*

l’!=new l’=new l”=*
R3 j=ConfMgmt

l’!=new

ci1:ConfInfoProvServ ap1:ApprovalMgrServ

rm1:ReviewingMgrServ

sm1:SubmisMgrServ

pm1:PublishingMgrServ

sm2:SubmisMgrServ

L

R

am1:AuthorMgrServ

« Service »

Cr=TrackChairSite
Sct=ConfMgmt
Scl=SubmisMgr

« Service »

Cr=ConfChairSite
Sct=ConfMgmt
Scl=ConInfoProv

« Service »

Cr=ConfChairSite
Sct=ConfMgmt
Scl=ApprovalMgr

« Service »

Cr=AuthorSite
Sct=AuthorMgmt
Scl=AuthorMgr

« Service »

Cr=ConfChairSite
Sct=ConfMgmt
Scl=PublishingMgr

« Service »

Cr=TrackChairSite
Sct=ConfMgmt
Scl=ReviewingMgr

« Service »

Cr=TrackChairSite
Sct=ConfMgmt
Scl=SubmisMgr

rm2:ReviewingMgrServ

« Service »

Cr=TrackChairSite
Sct=ConfMgmt
Scl=ReviewingMgr

ci2:ConfInfoProvServ

am1:AuthorMgrServ

« Service »

Cr=ConfChairSite
Sct=ConfMgmt
Scl=ConInfoProv

« Service »

Cr=AuthorSite
Sct=AuthorMgmt
Scl=AuthorMgr

ap2:ApprovalMgrServ

pm2:PublishingMgrServ

« Service »

Cr=ConfChairSite
Sct=ConfMgmt
Scl=ApprovalMgr

« Service »

Cr=ConfChairSite
Sct=ConfMgmt
Scl=PublishingMgr

Figure 4: Applying substitution action.

4 RELATED WORK

Many research efforts contribute to the topic consid-
ered by this work. Regarding Architecture Descrip-
tion Language (ADL) as a support for achieving self-
adaptive or self-configuration software, (Georgiadis
et al., 2002) proposed the use of architectural con-
straints as the basis for self-organising architectures in
distributed systems. In this proposal structural speci-
fication of architectures is carry out through the Dar-
win ADL (J. Magee, N. Dulay, S. Eisenbach and J.
Kramer, 1995). (Garlan and Schmerl, 2002) depict
an approach for self-adaptation of architectures based
on the ACME ADL (Garlan et al., 2000). The CHAM
ADL (Inverardi and Wolf, 1995) offers an approach in
terms of molecules and reactions, where components
are represented as atoms connected into molecules.
Reconfigurations are specified as reactions. Provided
with an appropriate set of reaction rules, it is possible
to determine whether a certain reconfiguration is valid
or not.

(Le Metayer, 1998) adopted graph grammar for
modeling of software architectures and associated re-
configuration. With this formalism, he expresses ar-
chitectural styles and reasons about conformance of
change or evolution with respect to structural con-
straints.

WEBIST 2007 - International Conference on Web Information Systems and Technologies

244

Regarding frameworks for supporting self-healing
systems, (Wile and Egyed, 2004) propose a frame-
work for self-healing systems through monitoring, in-
terpretation, analyzing and reconfiguration of running
systems. (Gurguis and Zeid, 2005) propose a solution
based on an architecture encompassing a Monitor, an
Analyzer, a Planner and an Executive.(Shin, 2005)
proposes a strategy for self-healing components in
distributed systems based on an architecture with two
layers. The services layer provides functional ser-
vices to the other components, whilst the self-healing
layer implements mechanisms for monitoring and re-
pairing.

In the particular case of reconfiguration in Web
services, (Baresi et al., 2003) propose a model for
a SOA style. Architectures are specified by adapt-
ing UML diagrams and reconfiguration is achieved
through reconfiguration rules. An important differ-
ence with our work is that their model, for represent-
ing architectures, is more based on behavioral ele-
ments of service-oriented architectures.

The goals in the WS-DIAMOND go beyond these
approaches, namely a dynamic reconfiguration of
Web service architectures whenever some QoS mis-
matches occur, considering both functional and non
functional features of Web services.

5 CONCLUSION

The architectural aspects aforementioned may be
translated and implemented by using the architec-
tural tools being developed at LAAS-CNRS. In con-
crete, the architectural description, as well as, the ba-
sic rules are described by XML files defined across
XML Schemas. Initial specification and reconfigura-
tion actions could be mapped into graphs and graph
transformation actions, respectively. The main idea is
to use a graph transformation engine in order to man-
age dynamic changes in the Web services application
whenever a reconfiguration action is triggered.

The approach herein described enables modeling
of dynamic reconfiguration of Web services at the
architectural level. Following the goals of the WS-
DIAMOND project we consider its integration to the
monitoring, diagnosis and repair mechanisms being
developed, in order to satisfy requirements of a global
self-healing solution (Koopman, 2003). An extended
version of the Cooperative Review example might in-
troduce other interacting scenarios by handling addi-
tional architectural elements.

REFERENCES

Baresi, L., Heckel, R., Thöne, S., and Varró, D. (2003).
Modeling and validation of service-oriented architec-
tures: application vs. style. In ESEC / SIGSOFT FSE,
pages 68–77.

Dashofy, E. M., van der Hoek, A., and Taylor, R. N. (2002).
Towards architecture-based self-healing systems. In
WOSS, pages 21–26.

Garlan, D., Monroe, R., and Wile, D. (2000). Acme: Ar-
chitectural description of component-based systems.
In Foundations of Component-Based Systems. Leav-
ens, G.T., and Sitaraman, M.(eds), pages 47–68. Cam-
bridge University Press.

Garlan, D. and Schmerl, B. (2002). Model-based adaptation
for self-healing systems. In WOSS ’02: Proceedings
of the first workshop on Self-healing systems, pages
27–32, New York, NY, USA. ACM Press.

Georgiadis, I., Magee, J., and Kramer, J. (2002). Self-
organising software architectures for distributed sys-
tems. In WOSS ’02: Proceedings of the first workshop
on Self-healing systems, pages 33–38, New York, NY,
USA. ACM Press.

Gurguis, S. A. and Zeid, A. (2005). Towards autonomic web
services: achieving self-healing using web services. In
DEAS ’05: Proceedings of the 2005 workshop on De-
sign and evolution of autonomic application software,
pages 1–5, NY, USA. ACM Press.

Inverardi, P. and Wolf, A. (1995). Formal specification and
analysis of software architectures using the chemical
abstract machine. In IEEE Transactions on Software
Engineering, 21(4):373–386.

IST (2006). The web services diagnosability, monitoring
and diagnostic project. http://wsdiamond.di.unito.it.

J. Magee, N. Dulay, S. Eisenbach and J. Kramer (1995).
Specifying distributed software architectures. In Pro-
ceeding of the 5th European Software Engineering
Conference, ESEC ’95.

Koopman, P. (2003). Elements of the self-healing system
problem space. In Proceeding of the Workshop on
Software Architectures for Dependable Systems.

Le Metayer, D. (1998). Describing software architecture
styles using graph grammars. In IEEE Transactions
on Software Engineering, 24(7):521–533.

OMG (2005). Unified modeling language specifi-
cation. Technical Report Infrastructure Version
2.0.formal/05-07-04, Object Management Group.

Shin, M. E. (2005). Self-healing components in robust soft-
ware architecture for concurrent and distributed sys-
tems. Sci. Comput. Program., 57(1):27–44.

Wile, D. S. and Egyed, A. (2004). An externalized infras-
tructure for self-healing systems. In Proceedings of
the Fourth Working IEEE/IFIP Conference on Soft-
ware Architecture. IEEE Computer Society.

MODELING ARCHITECTURAL LEVEL REPAIR IN WEB SERVICES

245

