
TEST FRAMEWORKS FOR ELUSIVE BUG TESTING

W. E. Howden
CSE, University of California at San Diego, La Jolla, CA, 92093, USA

Cliff Rhyne
Intuit Software Corporation, 6220 Greenwich D., San Diego, CA, 92122 USA

Keywords: Testing, elusive, bugs, frameworks, bounded exhaustive, JUnit.

Abstract: Elusive bugs can be particularly expensive because they often survive testing and are released in a deployed
system. They are characterized as involving a combination of properties. One approach to their detection is
bounded exhaustive testing (BET). This paper describes how to implement BET using a variation of JUnit,
called BETUnit. The idea of a BET pattern is also introduced. BET patterns describe how to solve certain
problems in the application of BETUnit. Classes of patterns include BET test generation and BET oracle
design. Examples are given of each.

1 INTRODUCTION

1.1 Background

A variety of defect detection testing guidelines have
been proposed. Some are based on empirical
evidence that certain kinds of test cases, such as so-
called "corner cases" or "boundary cases", are more
prone to be associated with defects. Others require
that all parts of the code have been tested, as in
branch or statement testing.
 We are interested in a certain kinds of defects
that are not amenable to discovery using standard
testing methods, which we have called "elusive
bugs". This kind of bug often has the following
characteristics: i) it occurs late in the testing cycle or
after release, ii) it occurs when a certain combination
of conditions takes place, and iii) it is not reliably
found by standard testing methods.
 Approaches to the discovery of these kinds of
defects include the use of area-specific defect lists
[e.g. Jha, Kaner, 2003] and test selection patterns
[e.g. Howden, W.E., 2005]. Lists and patterns do not
work well for the following reasons: they quickly
become too long, they are difficult to organize into
useful classes, and they are based on hindsight - the
next defect may require yet another addition to the
list.
 This paper is concerned with the use of "Bounded

Exhaustive Testing" (BET) for the detection of
elusive bugs. More specifically, it is concerned the
development of a testing tool similar to JUnit that
facilitates BET.
 Our discussion of the problem, and the
BETUnit approach, will involve the following
example.

1.1.1 Account Break Example

A production accounting program contained code for
processing a sorted file of transactions. Each record
had an account number and was either financial or
non-financial. The program was supposed to
construct totals for the financial records for each
account, which would appear as a group in the sorted
file. It processed the records one at a time, and was
supposed to output the current account's total when it
observed an "account break". A break occurs when
the account number in the transaction record
changes.
 The bug in the program occurred because it failed
to check for account breaks when the last record of a
group was non-financial. Under certain
circumstances, this would result in the incorrect
addition of one account's transactions to the total for
the next account.
 One of the functional properties that a tester
might focus on is correct processing of account

250
E. Howden W. and Rhyne C. (2007).
TEST FRAMEWORKS FOR ELUSIVE BUG TESTING.
In Proceedings of the Second International Conference on Software and Data Technologies - SE, pages 250-257
DOI: 10.5220/0001331102500257
Copyright c© SciTePress

breaks. In addition, he would probably test for
processing of both financial and non-financial
records. But it is the combination of these two
factors, along with data that would cause the defect
to result in incorrect output, which is relevant.

1.2 Bounded Exhaustive Testing

In general, it is not possible to test a program over
all possible inputs. In Bounded Exhaustive Testing,
a bounded subcase of the application is formulated,
and all possible behaviors of the subcase are tested.
It is argued that many of the faulty behaviors that
can occur for the general case will also occur for the
bounded subcase. Our experience indicates that, in
particular, the combinations associated with elusive
bugs will occur in both the full-sized application and
the bounded subproblem
 Similar ideas have been used in the past. For
example, when a program has loops for which the
numbers of iterations that are carried out depends on
input data, it is common to use bounded tests that
will cause 0,1 and possibly one or two larger
numbers of iterations. In [Howden, W.E., 2005], an
approach to bounded exhaustive testing is described
which uses real input to bound the problem and
symbolic input to summarize the complete behavior
of a program within the bounded domain. Model
checking is also a kind of exhaustive approach, in
which all states in a bounded version of the problem
are examined. However, in model checking the
focus is on analysis rather than testing.
 Recent BET research has been carried out in the
context of class-based unit testing and involves
straight testing rather than testing combined with
symbolic evaluation or analysis. In addition, it has
resulted in new research on methods for defining and
generating bounded input domains. One of the first
of these, the Iowa JML/JUnit project, described in
[Cheon, Y., Leavens, G., 2002], has a method for
defining and generating BET tests. BET was also
the focus of the Korat project research, described in
[Boyapati, C., Khurshid, S., Marinov, D., 2002.].

1.3 Overview of Paper

This paper is organized as follows. Section 2 is a
review of JUnit. Section 3 describes the BETUnit
approach and Section 4 describes an example
scenario for BetUnit usage. Section 5 describes
other work, and in particular, the Iowa JML/JUnit
and Korat projects. Section 6 contains conclusions
and future work.

2 JUNIT – REVIEW

JUnit consists of a collection of classes and a test
automation strategy. The TestRunner class runs
tests. It is given a file containing a class definition
for a subclass of the TestCase class which is
expected to contain a suite() method. suite() will
return an object of type TestSuite, which contains a
collection of test cases. Each of these test cases is an
instance of a subclass of TestCase containing a test
method. TestRunner executes each test object in the
suite. It does this by calling its run() method.. It
passes a TestResult instance as an argument to run(),
which is used to record test results. run() runs the
setUp(), runTest() and tearDown () methods in the
TestCase subclass instance. runTest() runs the test
method in that instance. There are several
approaches to implementing runTest(). One is to
have it run the method whose name is stored in a
special class variable in the instance.
 The user of JUnit has two options: default and
custom. In the default use, the default definition for
the suite() method is used when TestRunner is given
an instance of a subclass S of TestCase. S must also
contain all of the test methods, whose names must
have the prefix "test". The default suite() method
will use reflection to find the test methods. It will
then build instances of S for each of the test
methods. For each test x, the name of the test
method can be stored in the special class variable
that is used by the runTest() method to identify the
test method to run. These TestCase instances will be
added to the TestSuite instance that suite() it creates,
which is what it returns to TestRunner.
 In the custom approach, the tester creates a new
subclass of TestCase with a custom suite() method
definition. Typically, suite() will create an instance
TestSuite, and then add instances of subclasses of
TestCase. Each of these subclasses will have a
defined test method that will be run when the
TestRunner executes the suite. This method can be
identified by the class variable x used to store the
name of the method to be run. It can be set by using
the TestCase constructor which takes a string
parameter that will be stored in x. It is possible to
create a composite of TestSuite and TestCase
subclass instances. The composite forms a tree, with
the TestCase instances at the leaves. The run()
method for a TestSuite instance will call the run()
methods of its TestSuite children. At the leaves, the
run() methods for the TestCase instances will be
called.
 JUnit uses an assertion approach to oracles. A
special exception class called Assertion is defined.

TEST FRAMEWORKS FOR ELUSIVE BUG TESTING

251

It is subclassed from Error rather than Exception
because it is not supposed to be caught by the
programmer's code. Programmers are required to
insert assertions in their code, in the form of calls on
the Assertion Class methods that generate the
exceptions.
 JUnit uses the Collecting Parameter pattern to
return results. A collecting parameter is one that is
passed around from one method to another in order
to collect data. As mentioned above, TestResult
objects are created and then passed to run() methods.
They are used to record the results of tests. When a
run() method catches an assertion violation, it
updates the TestResult object passed to it. Different
TestResult objects can be defined but there is a
simple default version that records the kind of
exception and where it was created.
 Assertions are not always adequate or practical
for use as test oracles. In the cases where it is not
feasible to construct an assertion-based oracle we
can settle for robustness testing, in which the only
results that are reported are system failures. This
can be done since the run() method in JUnit catches
error exceptions and reports them. In other cases the
best solution to the oracle problem is to have an
externally defined second version of the program
whose results can be compared with the application
results. WE call this the "2-version oracle pattern".
 Many varieties of JUnit have been produced.
There's a JUnit port to C++ called CppUnit. NUnit
is for the .net framework. Also, there is a rich
library of tools available for JUnit. Development
environments like Eclipse come with a GUI for
running and examining the results of JUnit tests.
JUnit tests can be run from Ant build scripts.

3 BETUNIT

3.1 Possible Approaches

The goal of our BET work was to have set of classes
like those in JUnit, which would allow the user to
have full flexibility in creating tests, while at the
same time having the convenience of a test runner
and a set of test case classes from which he could
inherit capabilities for creating his test cases. A
central focus was the automated generation of
combinations that will reveal elusive bugs.
 One approach would be to have users subclass
TestCase and provide a custom suite() method that
would construct a complete suite of BET tests.
Unfortunately, BET can involve a very large number
of tests, so the memory requirements for this suite

could be enormous, more than can be handled with a
standard JUnit implementation.
 Another approach is to have the user break down
a BET set of test cases into batches. However, this
is a clumsy high maintenance solution.
 Any successful approach will have to allow for
just-in-time generation of BET tests, where each test
is run before the next is generated. One approach is
to define a new subclass of TestCase that does this
called BETCase, which is described here.
 Another goal for the BETUnit project was to
develop generic combinational generators that could
be used to automatically test different input
combinations, and to facilitate the use of different
kinds of combinators, such as all-pairs, in addition to
standard BET exhaustive combinations.
 We used the concept of a test domain, which is a
set of tests or test components. These are defined
using TestDomain classes. Users of the domains
generate instances of specialized subclasses of
TestDomain, possibly supplying parameters to the
constructor. TestDomain subclass instances are then
used to automatically generate tests from the
associated test domain. For example, intDomain
generates elements from a specified range of
integers. The constructor has min and max integer
parameters. More complex TestDomains may have
constructors that take other TestDomain instances as
parameters. TestDomain classes all have a next()
and a more() method. The latter returns true if there
are more items to be generated. TestDomains also
have other methods, such as reset().

3.2 Sample Approach

The approach described here involves the use of a
subclass BETCase of TestCase. Testers will
construct a subclass of BETCase, rather than a
subclass of TestCase.
 When a tester subclasses BETCase, he will
supply a definition for initDomain() and a definition
for a test method m. m is the method that creates
instances of the CUT and then tests the CUT by
executing its methods. initDomain() constructs a
data generator object of type Domain and assigns it
to a BETCase class variable called "testDomain".
initDomain() will be called by the constructor for
BETCase. When you call the first()/next()
methodsof the testDomain object, it automatically
generates the next test object to use in an execution
of the test method m defined in the BETCase
subclass.
 initDomain() may be written to use one of the
standard BET generators, or it could contain its own

ICSOFT 2007 - International Conference on Software and Data Technologies

252

class definitions to define or modify a standard
generator.
 The run() method in BETCase is similar to the
run() method in TestCase, but with some added
twists. It calls the setUp(), runTest(), and
tearDown() methods. It calls these methods
repeatedly until there are no more test data objects
that will be returned from the generator set by
initDomain(). runTest() will run the defined test
method m, which in the variation of JUnit described
above, is identified from the special class variable in
the TestCase instance. Unlike classic JUnit, the test
method m is expected to have input. runTest() calls
the test method m with the data returned from
executing x.next(), where x is the domain generator
object set by initDomain(). next() is expected to
return a data object of the type expected by m. For
each test cycle, run() uses x.more() to see if there are
more tests in the sequence to be generated.

3.3 Variations

There are several possible variations on the above.
For example, we could write test methods m that get
their input from a special class variable rather than a
parameter.
 Also, we could allow the use of more than one
domain generator in a BETUnit subclass. This
would involve the tester adding a set of testDomain
variables, giving them values in initDomain(). It
would be necessary to incorporate some kind of
correspondence mechanism from the testDomain
variables to either the class variables in BETCase or
the test method input parameters, whichever
approach is used for input to a test. In the case of
parameters, typing could be used to perform the
mapping correspondence.

3.4 Default suite() Option With
Multiple Test Method BETCase
Instances

In the non-default mode for JUnit, the user defines a
suite() method in the TestCase subclass supplied to
the TestRunner. A similar approach is used in
BETUnit. The user creates a subclass of TestCase
(i.e. of BETCase) with a suite method that returns a
suite object. The test case vector in the suite object
will contain one or more instances of BETCase
subclasses, each having the required definitions for
initDomain(), and the new run() method.
 As mentioned earlier JUnit has a default
approach in which the user can define a TestCase
subclass with a set of test methods, all of which

begin with "test". The default suite() method uses a
special constructor for a TestSuite instance which
takes the TestCase as a parameter. The suite
constructor then generates individual instances of the
TestCase subclass, one for each test method, which
it puts in its suite vector. A class parameter is set to
identify the test method of interest for that subclass
instance.
 The BETUnit analog to the JUnit default version
is the following. The user supplies a BETCase
subclass with the default suite() method. The
subclass has the new versions of run(), the domain
generator variable, and one or more test methods
whose name has the prefix "test". The default suite
method uses a TestSuite constructor with the name
of the BETCase subclass as a parameter. This
constructor use reflection to find the test methods,
and creates an instance of the BETCase subclass for
each. Note that in this approach, it is assumed that
all the test methods have the same input type, and
are tested over the same set of BET tests, generated
by the test generator installed by initDomain(). This
limitation could be removed, at the cost of more
complexity if it is seen to be necessary.

3.5 BET Runner

The same test runner used in JUnit can also be used
in BETUnit. The user prepares a BETCase subclass,
with the custom or the default suite() method.
suite() generates a TestSuite instance, whose run()
method is called by the test runner.

3.6 BET Oracle and Data Generation
Test Patterns

Test patterns describe strategies for accomplishing
different kinds of testing goals or tasks. Earlier we
mentioned the 2-version oracle pattern, in which a
second version of a program is used to serve as an
oracle for a primary version. This pattern is
attractive when an oracle version can be produced
more easily than the application code, and using a
different design approach to avoid coincidental
common defects. We identified a useful 2-version
pattern for BET testing of the Account-Break
example. The central control structure of the
application under test is a loop that reads in records,
and has to perform account break activities when it
detects that the account number has changed. The
program has an asynchronous structure in the sense
that it is not possible to know in advance when the
account break will occur. When test data is being
generated by BET, this information is known in

TEST FRAMEWORKS FOR ELUSIVE BUG TESTING

253

advance and could be supplied as input along with
the record files, so that a "synchronous" oracle
version could be built. Such a version would know
exactly when the account breaks occur, so that it
could use "for" loops with fixed bounds and
increments rather than "do-while" loops. We call
this the Synchronized Sequence Oracle pattern, and
expect it to be widely applicable in BET oriented
testing. We have also identified other BETUnit-
oriented oracles that take advantage of the fact that i)
the test cases will be "small" and ii) certain kinds of
meta-data can be generated for each input case,
which can be used to construct a different kind of
design for the application.
 Other BET-oriented patterns can be identified
that are associated with test data generation. Recall
that the goal with BETUnit is to find elusive bugs,
and that these are associated with combinations. The
Sequence Permutation Test Generation pattern is a
variation on all possible combinations test
generation. In this pattern, the tester prepares a seed
set of data items such as instances of records. The
test data generator generates all permutations of this
set. It differs from all-combinations in that there is
no exhaustive generation involving the possible data
that is stored in the records, only the seed set is used
that are permuted. Other BET oriented test
generator patterns include the Stratified Permutation
pattern used in the following example.

4 EXAMPLES

In the following two examples we will describe the
use of two test generators that were applied to the
account break example described earlier in the
paper. The Synchronized Sequence Oracle pattern
was used to construct an oracle. In the first example,
the Sequence Permutation pattern is used was used
for automated test generation, and in the second the
Stratified Permutation pattern was used. For both
generators, the bug was discovered. For each
example we give some statistics associated with the
generation and testing process. Both of the test
generator classes that were constructed were just-in-
time domain generators, generating the next test
input as it is needed.

4.1 Permutation Generator

In this example, we assume the availability of the
PermDomain() class. Instances of PermDomain
will return all possible permutations of of a set of
objects. The set of objects is passed to the

constructor in a parameter. PermDomain has a "just
in time" generator for giving us the next
permutation. Results are returned in a vector.
 For this example, PermDomain is wrapped in
AccountFileDomain. The next() method for
AccountFileDomain returns an object with two parts,
a metadata part and an instance of AccountFile.
AccountFile instances are vectors of record objects.
Record is also a class, whose instances are the kinds
of records seen in the account break example. Since
there are two kinds or records, we subclass to
produce FinancialRecord and NonFinancialRecord.
 AccountFileDomain instances are created with a
seed vector of records that is used to create a
PermDomain instance. The next() method of
AccountFileDomain calls the next() method of
PermDomain. Since the input files to the application
are expected to be sorted, the next() method in
AccountFileDomain also sorts them .
 We used the Synchronized Sequence Oracle
pattern for this example. The metadata part of an
object returned by the next() method of
AccountFileDomain is a vector with a number of
items equal to the number of accounts in the
associated AccountFile object. Each entry gives the
number of records for an account. This information
is determined by AccountFileDomain. It can
determine this by first counting the number of
different accounts, and then counting the number for
each account. It is important that it compute this
from the seed, rather than by reading through a
candidate sorted input, detecting when the account
breaks occur. If it did this, it would be duplicating
the asynchronous nature of the application, and
could have the same defects. The test methods in
our BETCase subcase were written so that when
they are handed an input test object, they know that
the first part is the metadata and the second part is
the input AccountFile. The whole object is given to
a synchronous sequence oracle implementation of
the account break application, which computes a
result for the given file. The comparison is wrapped
in an assertion.
 The example was run with 4, 8 and 12-record
seeds. The first had 1 account with 4 records, the
second 2 accounts with 4 records, and the third 3
accounts with 4 records. The figures in Table 1
indicate the numbers of tests run and the amount of
time required.

ICSOFT 2007 - International Conference on Software and Data Technologies

254

Table 1: Simple permutation generation.

Input Size Test Case Count Duration (sec)

4 (1/4) 24 0.047

8 (2/4) 40,320 6.2

12 (3/4) 479,001,600 11,760 (3 h, 16 m)

4.2 Stratified Permutation Generator

The previous example is not as efficient as it could
be since each input needs to be sorted before it can
be passed to the function being tested. Many tests
will be identical. Rather than generate and then
rerun duplicates we devised an alternative approach
in which we separated each account into its own
permutation domain so that redundant tests are no
longer generated. In the new approach we used a
new general purpose domain generator called
StratifiedPermDomain. There are several possible
approaches to a StratifiedPermDomain. In one
approach the domain generator takes a set of k
vector objects. It generates all combinations in
which there is a sequence of k objects, with the i'th
object taken from the i'th set. Instances of
StratifiedPermDomain are constructed with a vector
of vectors. We used a variation on this idea.
 For this application StratifiedPermDomain is
wrapped in a StratifiedFileDomain generator. The
constructor for this generator creates in instance of
StratifiedPermDomain which it uses to generate
AccountFile objects. As in the other example it also
returns meta-data that is used by the synchronized
sequence oracle for the application testing.
 In our experiment with a stratified generator, we
used seeds with 8, 12 and 16 records. The first seed
had 2 accounts with 4 records each, the second had 3
accounts with 4 records, and the third had 4 accounts
with 4 records each. Table 2 summarizes the
numbers of tests run and the duration of the tests.
The improvement in test case count and test duration
in the new approach is staggering. Only 0.0029% of
the test cases are generated from an input size of 12,
and the test finishes in a little over a minute instead
of over 3 hours. The domain creates (x1! * x2! * ...
xn!) inputs, where n is the number of accounts and xi
is the number of records for account i.

Table 2: Stratified permutation generation.

Input Size Test Case Count Duration (seconds)

8 (2/4) 576 .407

12 (3/4) 13,824 3.4

16 (4/4) 331,776 87

5 OTHER BET RESEARCH

5.1 Iowa JML Approach

A research team at Iowa State University developed
a framework for Java class testing that incorporated
a BET component. There were 5 key features in
their approach: use of JML for assertions, pre and
postconditions, postconditions as test oracles,
automated generation of JUnit test classes from Java
classes, exhaustive testing of all combinations of
input values, and user determination of finite sets of
values for seeding the tests.
 The Iowa system takes a Java class and generates
a TestCase subclass that contains a set of class
variables that are used to organize the tests. Each of
these is an array variable. The type of the first one is
the type of the class under test, and is used to hold
instances of that class, each constructed with a
different set of actual parameters for the class
constructor. The others correspond to the types of
the parameters of the methods in the CUT. Each
will be assigned a finite set of values that represents
that type in the tests. A test method is generated for
each of the CUT methods. The test method t for a
CUT method m contains a set of local array
variables, one for each parameter for m. These are
initialized to the values from the class variables for
parameter types. Each test method contains a set of
nested loops that iterate over the test method arrays,
constructing all possible combinations of values with
one element from each array. This is then used to
run the method in the class under test.
 The tester subclasses the above test, constructing
a custom setUp() method that assigns values to the
class variable test data arrays. Recall that these hold
two kinds of things. One is a set of instances of the
CUT, created with different values for the
constructor parameters. The others are arrays of
values for the types of the CUT method parameters.
These values are in turn assigned to the local
variable arrays in a test method when it is run.
 This system carries out the type of BET testing
we are interested in, but is restricted in various ways.

TEST FRAMEWORKS FOR ELUSIVE BUG TESTING

255

Since the combination mechanism is automatically
generated there is no opportunity for the tester to try
different kinds of combinatory mechanisms such as
all-pairs or the permutation BET generators
described above in the Account Break examples.
Another limitation is that the same set of instances of
a type must be used for all method parameters with
that type. There is no idea that different finite sets of
values might be appropriate for different method
parameters of the same type. There is also a
common set of CUT object instances that must be
used for the different test methods for the different
CUT methods. Finally, there is the dependence on
JML for assertions, which is not widely known or
used. Related to this is the use of a postcondition
oracle written in JML, which may not be appropriate
for some programs that do not have a natural
declarative specification.

5.2 Korat

Korat, like the Iowa system, focuses on automated
test data generation and execution, use of
preconditions to filter out invalid tests, and use of
postconditions/assertions as program oracles.
 The central driving entity in Korat is
"finitization". This involves the creation of a finite
domain of values that can be assigned to fields (class
variables). For all primitive types, a finite set of
values is chosen for the domain. For each field type
class for a class, a finite set of instances of that class
is created. The instances are indexed to identify
them. This is called a class domain. Null is included
in the domain for field variables whose value is a
class instance. All of the primitive type finite
domains, together with the class domains, form a
total finite domain of field values D. The primitive
domain contents and the number of instances of a
class in a class domain are specified in a finitization
object. There is a correspondence between each
field in the objects in a domain D and the subsets of
D that are candidate values for that field. A
candidate vector is an assignment of properly typed
elements of D to fields in elements of D.
 If a class method has no parameters, then a set of
values for its class's variables, taken from the
finitization specified domain, forms the input for
testing that method. If the method has parameters,
then a class can be constructed whose fields
correspond to those parameters, which is then used
in the construction of the finitization domain for the
parameters. This will result in the definition of a set
of inputs for testing the method.
 The candidate vector generation process

incorporates two main optimizing strategies. The
first uses preconditions to filter out invalid
combinations. There could be many of these
because any instance of a class C in a domain could
be assigned as the value of any field of an object in
the domain that has that type.
 Precondition filter effectiveness is expanded as
follows. Suppose that a precondition predicate
evaluates to False for a candidate vector. This
means the candidate is not a suitable test. Suppose
that the precondition only involves the values of a
subset of the candidate vector. This means that the
precondition is independent of the other values in the
vector, so any candidate vector which differs from
the tested one only in the non-used variables can also
be rejected as invalid
 The second optimization strategy recognizes that
when a class domain is constructed, the instances are
not really distinguishable, so that test inputs that
differ only in domain class instance indices will
cause the same program behavior. Consequently, the
test generator is designed to only generate a single
instance of a possible class of such "isomorphic"
values.
 The test automation procedure in Korat is built
into the system. It uses a fixed strategy for all
applications, with special features to optimize the
numbers of tests generated.
 BETUnit also automatically generates tests but is
more flexible. For example, in BETUnit we would
not need an isomorphism suppresser for a program
that manipulates binary trees because this could be
built into the binary tree generator that was used by
the test data generator for the application.
 Korat differs from BETUnit in that all tests in
Korat are generated before test execution begins.
BETunit specifically depends on just-in-time
generation to avoid huge memory requirements.
Korat, like BETUnit, has test domains from which
values are chosen. Unlike Korat, BETUnit
incorporates the generation of the combinations into
the domain objects from which the elements of the
combination are drawn. This follows the
expert/object animation pattern in object oriented
programming. In the case of Korat, the combining
mechanism is built into the system, making it more
difficult to use alternative combining strategies such
as all-pairs as opposed to all-combos.
 The emphasis of BET is different from Korat. In
JML/Junit and Korat the emphasis is on fully
automatic testing. The emphasis in BETUnit is
finding elusive bugs. It assists the user by providing
automated test data generation classes that can be
used to focus BET on possible elusive bug hiding

ICSOFT 2007 - International Conference on Software and Data Technologies

256

places. Ongoing work focuses on the automated
elusive bug detection aspect of BETUnit.

6 SUMMARY AND FUTURE
WORK

Testing for elusive bugs involves running tests that
explore different kinds of input combinations.
Testing using rules that are based on specific
application-oriented kinds of combinations has not
been generally successful. There are often too many
combinations and, in any case, we do not know what
combinations to look at until after the defect has
been discovered and analyzed. One way to solve
this problem is to use some form of bounded
exhaustive testing. However, we do not want to do
this just for the sake of automating testing, we want
to maintain some control over the combinatory
mechanisms. BetUnit accomplishes this, both in the
way it is a subspecialty of JUnit, and its use of
separately defined combinatory mechanisms.
 In our work we developed the concept of a BET
Pattern. This is a test pattern that offers suggestions
on certain aspects of BET Testing. One area of BET
Patterns is test data generation where we defined two
combinatory patterns: Permutation and Stratified
Permutation. Both were applied to an Account
Break example. We also found that we needed to
consider BET-oriented oracle patterns. The
effectiveness of postconditions for oracles, where
they correspond to logical expressions, is too
limited. As is well known in testing, many programs
have an algorithmic rather than a declarative
specification. For such applications we need a
secondary version of the application program to test
the output of the prime application program. The
problem with this approach is that the two versions
may contain the same defects. One way of avoiding
this is to use different design strategies. We have
identified several kinds of oracle design patterns,
including the Sequence Synchronizing Oracle
pattern used in the Account Break example, that
produce "orthogonal" application program designs.
In this example, the input generator returns certain
metadata along with the suggested input. This
metadata makes it possible to write a simpler oracle
version of the program. More specifically, instead
of waiting for some condition to happen during a
computation, it knows in advance from the metadata
exactly when it will happen. At the implementation
level, this allows simple "do" loops instead of
complex "while" loops.

 In the version of BET described earlier, each
BETCase has a single domain generator. This
means that all of the test methods defined in a single
BETCase must use the same parameters. In a way
this is more limited than the Iowa approach. In that
approach, the test values for the sets of test method
parameters must all be defined by a common set of
type finitizations, but each test method may have a
different subset, i.e. the test methods do not have to
have the same parameters. This limitation could be
removed in BetUnit by allowing the definition of
multiple Domain variables in a BETCase, which was
included in our prototype.
 In the Account Break example, BETUnit was
successfully applied using the Permutation
Generator BET pattern and the Synchronized
Sequence Oracle pattern. So far, only a small
number of domain generators have been
implemented. A solid library of complex and
primitive domains will be needed. We are now
doing this, and applying our test approach to a wide
variety of problems. The version of BETUnit
described in this paper is based on JUnit 3.8. This
provided a very flexible tool. We are now exploring
the use of JUnit 4 with BETUnit to see if its
advantages are maintained in this context. In
addition, we are examining alternative BET
strategies using frameworks other than JUnit.

ACKNOWLEDGEMENTS

The authors would like to thank Nathan Farrington
for his help in the development of BETUnit.

REFERENCES

Boyapati, C., Khurshid, S., Marinov, D., 2002. Korat:
Automated Testing Based on Java Predicates, In
ISSTA, IEEE Press.

Cheon, Y., Leavens, G., 2002. A Simple and Practical
Approach to Unit Testing: The JML and the JUnit
Way, In ECOOP 2002 -- Object-Oriented
Programming, 16th European Conference, Malaga,
Spain, June 2002, Proceedings. Volume 2374 of
Lecture Notes in Computer Science. Springer-Verlag.

Howden, W.E., 2005. Software Test Selection Patterns and
Elusive Bugs, In Proceedings COMPSAC 2005, IEEE
Press.

Howden, W.E., 1987. pp. 112, 114. Functional Program
Testing and Analysis, McGraw Hill.

Jha. A., Kaner, C., 2003. Bugs in the brave new unwired
world. In Pacific Northwest Software Quality
Conference.

TEST FRAMEWORKS FOR ELUSIVE BUG TESTING

257

