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Abstract:   Elusive bugs can be particularly expensive because they often survive testing and are released in a deployed 
system. They are characterized as involving a combination of properties.  One approach to their detection is 
bounded exhaustive testing (BET).  This paper describes how to implement BET using a variation of JUnit, 
called BETUnit.  The idea of a BET pattern is also introduced.  BET patterns describe how to solve certain 
problems in the application of BETUnit.  Classes of patterns include BET test generation and BET oracle 
design.  Examples are given of each.

1 INTRODUCTION 

1.1 Background 

A variety of defect detection testing guidelines have 
been proposed.  Some are based on empirical 
evidence that certain kinds of test cases, such as so-
called "corner cases" or "boundary cases", are more 
prone to be associated with defects.  Others require 
that all parts of the code have been tested, as in 
branch or statement testing. 
 We are interested in a certain kinds of defects 
that are not amenable to discovery using standard 
testing methods, which we have called "elusive 
bugs".  This kind of bug often has the following 
characteristics: i) it occurs late in the testing cycle or 
after release, ii) it occurs when a certain combination 
of conditions takes place, and iii) it is not reliably 
found by standard testing methods. 
 Approaches to the discovery of these kinds of 
defects include the use of area-specific defect lists 
[e.g.  Jha, Kaner, 2003] and test selection patterns 
[e.g. Howden, W.E., 2005]. Lists and patterns do not 
work well for the following reasons: they quickly 
become too long, they are difficult to organize into 
useful classes, and they are based on hindsight - the 
next defect may require yet another addition to the 
list. 
 This paper is concerned with the use of "Bounded 

Exhaustive Testing" (BET) for the detection of 
elusive bugs. More specifically, it is concerned the 
development of a testing tool similar to JUnit that 
facilitates BET. 
 Our discussion of the problem, and the 
BETUnit approach, will involve the following 
example. 

1.1.1 Account Break Example 

A production accounting program contained code for 
processing a sorted file of transactions.  Each record 
had an account number and was either financial or 
non-financial.  The program was supposed to 
construct totals for the financial records for each 
account, which would appear as a group in the sorted 
file.  It processed the records one at a time, and was 
supposed to output the current account's total when it 
observed an "account break".   A break occurs when 
the account number in the transaction record 
changes. 
 The bug in the program occurred because it failed 
to check for account breaks when the last record of a 
group was non-financial.  Under certain 
circumstances, this would result in the incorrect 
addition of one account's transactions to the total for 
the next account. 
 One of the functional properties that a tester 
might focus on is correct processing of account 
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breaks.   In addition, he would probably test for 
processing of both financial and non-financial 
records.  But it is the combination of these two 
factors, along with data that would cause the defect 
to result in incorrect output, which is relevant. 

1.2 Bounded Exhaustive Testing 

In general, it is not possible to test a program over 
all possible inputs.  In Bounded Exhaustive Testing, 
a bounded subcase of the application is formulated, 
and all possible behaviors of the subcase are tested.  
It is argued that many of the faulty behaviors that 
can occur for the general case will also occur for the 
bounded subcase.  Our experience indicates that, in 
particular, the combinations associated with elusive 
bugs will occur in both the full-sized application and 
the bounded subproblem 
 Similar ideas have been used in the past.  For 
example, when a program has loops for which the 
numbers of iterations that are carried out depends on 
input data, it is common to use bounded tests that 
will cause 0,1 and possibly one or two larger 
numbers of iterations.  In [Howden, W.E., 2005], an 
approach to bounded exhaustive testing is described 
which uses real input to bound the problem and 
symbolic input to summarize the complete behavior 
of a program within the bounded domain.  Model 
checking is also a kind of exhaustive approach, in 
which all states in a bounded version of the problem 
are examined.  However, in model checking the 
focus is on analysis rather than testing. 
 Recent BET research has been carried out in the 
context of class-based unit testing and involves 
straight testing rather than testing combined with 
symbolic evaluation or analysis.  In addition, it has 
resulted in new research on methods for defining and 
generating bounded input domains.  One of the first 
of these, the Iowa JML/JUnit project, described in 
[Cheon, Y., Leavens, G., 2002], has a method for 
defining and generating BET tests.  BET was also 
the focus of the Korat project research, described in 
[Boyapati, C., Khurshid, S., Marinov, D., 2002.].    

1.3 Overview of Paper 

This paper is organized as follows.  Section 2 is a 
review of JUnit.  Section 3 describes the BETUnit 
approach and Section 4 describes an example 
scenario for BetUnit usage.  Section 5 describes 
other work, and in particular, the Iowa JML/JUnit 
and Korat projects.  Section 6 contains conclusions 
and future work. 

2 JUNIT – REVIEW 

JUnit consists of a collection of classes and a test 
automation strategy.  The TestRunner class runs 
tests.  It is given a file containing a class definition 
for a subclass of the TestCase class which is 
expected to contain a suite() method.  suite() will 
return an object of type TestSuite, which contains a 
collection of test cases.  Each of these test cases is an 
instance of a subclass of TestCase containing a test 
method.  TestRunner executes each test object in the 
suite.  It does this by calling its run() method..  It 
passes a TestResult instance as an argument to run(), 
which is used to record test results. run() runs the 
setUp(), runTest() and tearDown () methods in the 
TestCase subclass instance.  runTest()  runs the test 
method in that instance.  There are several 
approaches to implementing runTest().  One is to 
have it run the method whose name is stored in a 
special class variable in the instance.  
 The user of JUnit has two options: default and 
custom.  In the default use, the default definition for 
the suite() method is used when TestRunner is given 
an instance of a subclass S of TestCase.  S must also 
contain all of the test methods, whose names must 
have the prefix "test".  The default suite() method 
will use reflection to find the test methods.  It will 
then build instances of S for each of the test 
methods.  For each test x, the name of the test 
method can be stored in the special class variable 
that is used by the runTest() method to identify the 
test method to run. These TestCase instances will be 
added to the TestSuite instance that suite() it creates, 
which is what it returns to TestRunner. 
  In the custom approach, the tester creates a new 
subclass of TestCase with a custom suite() method 
definition. Typically, suite() will create an instance 
TestSuite, and then add instances of subclasses of 
TestCase.  Each of these subclasses will have a 
defined test method that will be run when the 
TestRunner executes the suite.  This method can be 
identified by the class variable x used to store the 
name of the method to be run.  It can be set by using 
the TestCase constructor which takes a string 
parameter that will be stored in x. It is possible to 
create a composite of TestSuite and TestCase 
subclass instances.  The composite forms a tree, with 
the TestCase instances at the leaves.  The run() 
method for a TestSuite instance will call the run() 
methods of its TestSuite children.  At the leaves, the 
run() methods for the TestCase instances will be 
called. 
 JUnit uses an assertion approach to oracles.  A 
special exception class called Assertion is defined.  
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It is subclassed from Error rather than Exception 
because it is not supposed to be caught by the 
programmer's code.  Programmers are required to 
insert assertions in their code, in the form of calls on 
the Assertion Class methods that generate the 
exceptions. 
 JUnit uses the Collecting Parameter pattern to 
return results.  A collecting parameter is one that is 
passed around from one method to another in order 
to collect data.  As mentioned above, TestResult 
objects are created and then passed to run() methods.  
They are used to record the results of tests.  When a 
run() method catches an assertion violation, it 
updates the TestResult object passed to it.  Different 
TestResult objects can be defined but there is a 
simple default version that records the kind of 
exception and where it was created. 
 Assertions are not always adequate or practical 
for use as test oracles.  In the cases where it is not 
feasible to construct an assertion-based oracle we 
can settle for robustness testing, in which the only 
results that are reported are system failures.  This 
can be done since the run() method in JUnit catches 
error exceptions and reports them.  In other cases the 
best solution to the oracle problem is to have an 
externally defined second version of the program 
whose results can be compared with the application 
results.  WE call this the "2-version oracle pattern".  
 Many varieties of JUnit have been produced.  
There's a JUnit port to C++ called CppUnit.  NUnit 
is for the .net framework.  Also, there is a rich 
library of tools available for JUnit.  Development 
environments like Eclipse come with a GUI for 
running and examining the results of JUnit tests.  
JUnit tests can be run from Ant build scripts. 

3 BETUNIT 

3.1 Possible Approaches 

The goal of our BET work was to have set of classes 
like those in JUnit, which would allow the user to 
have full flexibility in creating tests, while at the 
same time having the convenience of a test runner 
and a set of test case classes from which he could 
inherit capabilities for creating his test cases.  A 
central focus was the automated generation of 
combinations that will reveal elusive bugs.  
 One approach would be to have users subclass 
TestCase and provide a custom suite() method that 
would construct a complete suite of BET tests.  
Unfortunately, BET can involve a very large number 
of tests, so the memory requirements for this suite 

could be enormous, more than can be handled with a 
standard JUnit implementation. 
 Another approach is to have the user break down 
a BET set of test cases into batches.  However, this 
is a clumsy high maintenance solution. 
 Any successful approach will have to allow for 
just-in-time generation of BET tests, where each test 
is run before the next is generated.  One approach is 
to define a new subclass of TestCase that does this 
called BETCase, which is described here. 
 Another goal for the BETUnit project was to 
develop generic combinational generators that could 
be used to automatically test different input 
combinations, and to facilitate the use of different 
kinds of combinators, such as all-pairs, in addition to 
standard BET exhaustive combinations. 
 We used the concept of a test domain, which is a 
set of tests or test components.  These are defined 
using TestDomain classes.  Users of the domains 
generate instances of specialized subclasses of 
TestDomain, possibly supplying parameters to the 
constructor.  TestDomain subclass instances are then 
used to automatically generate tests from the 
associated test domain. For example, intDomain 
generates elements from a specified range of 
integers.  The constructor has min and max integer 
parameters.  More complex TestDomains may have 
constructors that take other TestDomain instances as 
parameters.  TestDomain classes all have a next() 
and a more() method.  The latter returns true if there 
are more items to be generated. TestDomains also 
have other methods, such as reset(). 

3.2 Sample Approach 

The approach described here involves the use of a 
subclass BETCase of TestCase.  Testers will 
construct a subclass of BETCase, rather than a 
subclass of TestCase. 
 When a tester subclasses BETCase, he will 
supply a definition for initDomain() and a definition 
for a test method m.  m is the method that creates 
instances of the CUT and then tests the CUT by 
executing its methods.  initDomain() constructs a 
data generator object of type Domain and assigns it 
to a BETCase class variable called "testDomain".  
initDomain() will be called by the constructor for 
BETCase.  When you call the first()/next() 
methodsof the testDomain object, it automatically 
generates the next test object to use in an execution 
of the test method m defined in the BETCase 
subclass. 
 initDomain() may be written to use one of the 
standard BET generators, or it could contain its own 
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class definitions to define or modify a standard 
generator. 
 The run() method in BETCase is similar to the 
run() method in TestCase, but with some added 
twists.  It calls the setUp(), runTest(), and 
tearDown() methods. It calls these methods 
repeatedly until there are no more test data objects 
that will be returned from the generator set by 
initDomain().  runTest() will run the defined test 
method m, which in the variation of JUnit described 
above, is identified from the special class variable in 
the TestCase instance.  Unlike classic JUnit, the test 
method m is expected to have input.  runTest() calls 
the test method m with the data returned from 
executing x.next(), where x is the domain generator 
object set by initDomain(). next() is expected to 
return a data object of the type expected by m.  For 
each test cycle, run() uses x.more() to see if there are 
more tests in the sequence to be generated.   

3.3 Variations 

There are several possible variations on the above.  
For example, we could write test methods m that get 
their input from a special class variable rather than a 
parameter. 
 Also, we could allow the use of more than one 
domain generator in a BETUnit subclass.  This 
would involve the tester adding a set of testDomain 
variables, giving them values in initDomain().  It 
would be necessary to incorporate some kind of 
correspondence mechanism from the testDomain 
variables to either the class variables in BETCase or 
the test method input parameters, whichever 
approach is used for input to a test.  In the case of 
parameters, typing could be used to perform the 
mapping correspondence. 

3.4 Default suite() Option With 
Multiple Test Method BETCase 
Instances 

In the non-default mode for JUnit, the user defines a 
suite() method in the TestCase subclass supplied to 
the TestRunner.  A similar approach is used in 
BETUnit.  The user creates a subclass of TestCase 
(i.e. of BETCase) with a suite method that returns a 
suite object.  The test case vector in the suite object 
will contain one or more instances of BETCase 
subclasses, each having the required definitions for 
initDomain(), and the new run() method. 
 As mentioned earlier JUnit has a default 
approach in which the user can define a TestCase 
subclass with a set of test methods, all of which 

begin with "test".  The default suite() method uses a 
special constructor for a TestSuite instance which 
takes the TestCase as a parameter.  The suite 
constructor then generates individual instances of the 
TestCase subclass, one for each test method, which 
it puts in its suite vector.  A class parameter is set to 
identify the test method of interest for that subclass 
instance. 
 The BETUnit analog to the JUnit default version 
is the following.  The user supplies a BETCase 
subclass with the default suite() method.  The 
subclass has the new versions of run(), the domain 
generator variable, and one or more test methods 
whose name has the prefix "test".  The default suite 
method uses a TestSuite constructor with the name 
of the BETCase subclass as a parameter. This 
constructor use reflection to find the test methods, 
and creates an instance of the BETCase subclass for 
each.  Note that in this approach, it is assumed that 
all the test methods have the same input type, and 
are tested over the same set of BET tests, generated 
by the test generator installed by initDomain().  This 
limitation could be removed, at the cost of more 
complexity if it is seen to be necessary. 

3.5 BET Runner 

The same test runner used in JUnit can also be used 
in BETUnit.  The user prepares a BETCase subclass, 
with the custom or the default suite() method.  
suite() generates a TestSuite instance, whose run() 
method is called by the test runner. 

3.6 BET Oracle and Data Generation 
Test Patterns 

Test patterns describe strategies for accomplishing 
different kinds of testing goals or tasks.  Earlier we 
mentioned the 2-version oracle pattern, in which a 
second version of a program is used to serve as an 
oracle for a primary version.  This pattern is 
attractive when an oracle version can be produced 
more easily than the application code, and using a 
different design approach to avoid coincidental 
common defects. We identified a useful 2-version 
pattern for BET testing of the Account-Break 
example.  The central control structure of the 
application under test is a loop that reads in records, 
and has to perform account break activities when it 
detects that the account number has changed.  The 
program has an asynchronous structure in the sense 
that it is not possible to know in advance when the 
account break will occur.  When test data is being 
generated by BET, this information is known in 
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advance and could be supplied as input along with 
the record files, so that a "synchronous" oracle 
version could be built.  Such a version would know 
exactly when the account breaks occur, so that it 
could use "for" loops with fixed bounds and 
increments rather than "do-while" loops.  We call 
this the Synchronized Sequence Oracle pattern, and 
expect it to be widely applicable in BET oriented 
testing.  We have also identified other BETUnit-
oriented oracles that take advantage of the fact that i) 
the test cases will be "small" and ii) certain kinds of 
meta-data can be generated for each input case, 
which can be used to construct a different kind of 
design for the application. 
 Other BET-oriented patterns can be identified 
that are associated with test data generation.  Recall 
that the goal with BETUnit is to find elusive bugs, 
and that these are associated with combinations.  The 
Sequence Permutation Test Generation pattern is a 
variation on all possible combinations test 
generation. In this pattern, the tester prepares a seed 
set of data items such as instances of records.  The 
test data generator generates all permutations of this 
set.  It differs from all-combinations in that there is 
no exhaustive generation involving the possible data 
that is stored in the records, only the seed set is used 
that are permuted.  Other BET oriented test 
generator patterns include the Stratified Permutation 
pattern used in the following example. 

4 EXAMPLES  

In the following two examples we will describe the 
use of two test generators that were applied to the 
account break example described earlier in the 
paper.  The Synchronized Sequence Oracle pattern 
was used to construct an oracle.  In the first example, 
the Sequence Permutation pattern is used was used 
for automated test generation, and in the second the 
Stratified Permutation pattern was used.  For both 
generators, the bug was discovered.  For each 
example we give some statistics associated with the 
generation and testing process.  Both of the test 
generator classes that were constructed were just-in-
time domain generators, generating the next test 
input as it is needed. 

4.1 Permutation Generator 

In this example, we assume the availability of the 
PermDomain() class.  Instances of  PermDomain 
will return all possible permutations of of a set of 
objects.  The set of objects is passed to the 

constructor in a parameter. PermDomain has a "just 
in time" generator for giving us the next 
permutation.  Results are returned in a vector. 
 For this example, PermDomain is wrapped in 
AccountFileDomain.  The next() method for 
AccountFileDomain returns an object with two parts, 
a metadata part and an instance of AccountFile. 
AccountFile instances are vectors of record objects.  
Record is also a class, whose instances are the kinds 
of records seen in the account break example.  Since 
there are two kinds or records, we subclass to 
produce FinancialRecord and NonFinancialRecord. 
 AccountFileDomain instances are created with a 
seed vector of records that is used to create a 
PermDomain instance.  The next() method of 
AccountFileDomain calls the next() method of 
PermDomain.  Since the input files to the application 
are expected to be sorted, the next() method in 
AccountFileDomain also sorts them . 
 We used the Synchronized Sequence Oracle 
pattern for this example.  The metadata part of an 
object returned by the next() method of 
AccountFileDomain is a vector with a number of 
items equal to the number of accounts in the 
associated AccountFile object.  Each entry gives the 
number of records for an account.  This information 
is determined by AccountFileDomain. It can 
determine this by first counting the number of 
different accounts, and then counting the number for 
each account.  It is important that it compute this 
from the seed, rather than by reading through a 
candidate sorted input, detecting when the account 
breaks occur.  If it did this, it would be duplicating 
the asynchronous nature of the application, and 
could have the same defects.  The test methods in 
our BETCase subcase were written so that when 
they are handed an input test object, they know that 
the first part is the metadata and the second part is 
the input AccountFile.  The whole object is given to 
a synchronous sequence oracle implementation of 
the account break application, which computes a 
result for the given file.  The comparison is wrapped 
in an assertion. 
 The example was run with 4, 8 and 12-record 
seeds. The first had 1 account with 4 records, the 
second 2 accounts with 4 records, and the third 3 
accounts with 4 records. The figures in Table 1 
indicate the numbers of tests run and the amount of 
time required. 
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Table 1: Simple permutation generation. 

Input Size Test Case Count Duration (sec) 

4 (1/4) 24 0.047 

8 (2/4) 40,320 6.2 

12 (3/4) 479,001,600 11,760 (3 h, 16 m)

4.2 Stratified Permutation Generator 

The previous example is not as efficient as it could 
be since each input needs to be sorted before it can 
be passed to the function being tested.  Many tests 
will be identical.  Rather than generate and then 
rerun duplicates we devised an alternative approach 
in which we separated each account into its own 
permutation domain so that redundant tests are no 
longer generated.  In the new approach we used a 
new general purpose domain generator called 
StratifiedPermDomain.  There are several possible 
approaches to a StratifiedPermDomain. In one 
approach the domain generator takes a set of k 
vector objects.  It generates all combinations in 
which there is a sequence of k objects, with the i'th 
object taken from the i'th set.  Instances of 
StratifiedPermDomain are constructed with a vector 
of vectors.  We used a variation on this idea. 
 For this application StratifiedPermDomain is 
wrapped in a StratifiedFileDomain generator.  The 
constructor for this generator creates in instance of 
StratifiedPermDomain which it uses to generate 
AccountFile objects. As in the other example it also 
returns meta-data that is used by the synchronized 
sequence oracle for the application testing.  
 In our experiment with a stratified generator, we 
used seeds with 8, 12 and 16 records.  The first seed 
had 2 accounts with 4 records each, the second had 3 
accounts with 4 records, and the third had 4 accounts 
with 4 records each.  Table 2 summarizes the 
numbers of tests run and the duration of the tests. 
The improvement in test case count and test duration 
in the new approach is staggering.  Only 0.0029% of 
the test cases are generated from an input size of 12, 
and the test finishes in a little over a minute instead 
of over 3 hours.  The domain creates (x1! * x2! * ... 
xn!) inputs, where n is the number of accounts and xi 
is the number of records for account i. 

Table 2: Stratified permutation generation. 

Input Size Test Case Count Duration (seconds)

8 (2/4) 576 .407 

12 (3/4) 13,824 3.4 

16 (4/4) 331,776 87 

5 OTHER BET RESEARCH 

5.1 Iowa JML Approach 

A research team at Iowa State University developed 
a framework for Java class testing that incorporated 
a BET component.  There were 5 key features in 
their approach: use of JML for assertions, pre and 
postconditions, postconditions as test oracles, 
automated generation of JUnit test classes from Java 
classes, exhaustive testing of all combinations of 
input values, and user determination of finite sets of 
values for seeding the tests. 
 The Iowa system takes a Java class and generates 
a TestCase subclass that contains a set of class 
variables that are used to organize the tests.  Each of 
these is an array variable.  The type of the first one is 
the type of the class under test, and is used to hold 
instances of that class, each constructed with a 
different set of actual parameters for the class 
constructor.  The others correspond to the types of 
the parameters of the methods in the CUT.  Each 
will be assigned a finite set of values that represents 
that type in the tests. A test method is generated for 
each of the CUT methods.  The test method t for a 
CUT method m contains a set of local array 
variables, one for each parameter for m.  These are 
initialized to the values from the class variables for 
parameter types.  Each test method contains a set of 
nested loops that iterate over the test method arrays, 
constructing all possible combinations of values with 
one element from each array.  This is then used to 
run the method in the class under test.   
 The tester subclasses the above test, constructing 
a custom setUp() method that assigns values to the 
class variable test data arrays. Recall that these hold 
two kinds of things.  One is a set of instances of the 
CUT, created with different values for the 
constructor parameters.  The others are arrays of 
values for the types of the CUT method parameters.  
These values are in turn assigned to the local 
variable arrays in a test method when it is run.   
 This system carries out the type of BET testing 
we are interested in, but is restricted in various ways.  
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Since the combination mechanism is automatically 
generated there is no opportunity for the tester to try 
different kinds of combinatory mechanisms such as 
all-pairs or the permutation BET generators 
described above in the Account Break examples. 
Another limitation is that the same set of instances of 
a type must be used for all method parameters with 
that type.  There is no idea that different finite sets of 
values might be appropriate for different method 
parameters of the same type.  There is also a 
common set of CUT object instances that must be 
used for the different test methods for the different 
CUT methods.  Finally, there is the dependence on 
JML for assertions, which is not widely known or 
used.  Related to this is the use of a postcondition 
oracle written in JML, which may not be appropriate 
for some programs that do not have a natural 
declarative specification. 

5.2 Korat 

Korat, like the Iowa system, focuses on automated 
test data generation and execution, use of 
preconditions to filter out invalid tests, and use of 
postconditions/assertions as program oracles.   
 The central driving entity in Korat is 
"finitization".   This involves the creation of a finite 
domain of values that can be assigned to fields (class 
variables).  For all primitive types, a finite set of 
values is chosen for the domain.  For each field type 
class for a class, a finite set of instances of that class 
is created.  The instances are indexed to identify 
them.  This is called a class domain. Null is included 
in the domain for field variables whose value is a 
class instance.  All of the primitive type finite 
domains, together with the class domains, form a 
total finite domain of field values D.  The primitive 
domain contents and the number of instances of a 
class in a class domain are specified in a finitization 
object.  There is a correspondence between each 
field in the objects in a domain D and the subsets of 
D that are candidate values for that field.  A 
candidate vector is an assignment of properly typed 
elements of D to fields in elements of D.   
 If a class method has no parameters, then a set of 
values for its class's variables, taken from the 
finitization specified domain, forms the input for 
testing that method.  If the method has parameters, 
then a class can be constructed whose fields 
correspond to those parameters, which is then used 
in the construction of the finitization domain for the 
parameters.  This will result in the definition of a set 
of inputs for testing the method. 
 The candidate vector generation process 

incorporates two main optimizing strategies.  The 
first uses preconditions to filter out invalid 
combinations.  There could be many of these 
because any instance of a class C in a domain could 
be assigned as the value of any field of an object in 
the domain that has that type. 
 Precondition filter effectiveness is expanded as 
follows.  Suppose that a precondition predicate 
evaluates to False for a candidate vector.  This 
means the candidate is not a suitable test.  Suppose 
that the precondition only involves the values of a 
subset of the candidate vector.  This means that the 
precondition is independent of the other values in the 
vector, so any candidate vector which differs from 
the tested one only in the non-used variables can also 
be rejected as invalid 
 The second optimization strategy recognizes that 
when a class domain is constructed, the instances are 
not really distinguishable, so that test inputs that 
differ only in domain class instance indices will 
cause the same program behavior. Consequently, the 
test generator is designed to only generate a single 
instance of a possible class of such "isomorphic" 
values. 
 The test automation procedure in Korat is built 
into the system.  It uses a fixed strategy for all 
applications, with special features to optimize the 
numbers of tests generated.   
 BETUnit also automatically generates tests but is 
more flexible.  For example, in BETUnit we would 
not need an isomorphism suppresser for a program 
that manipulates binary trees because this could be 
built into the binary tree generator that was used by 
the test data generator for the application.   
 Korat differs from BETUnit in that all tests in 
Korat are generated before test execution begins.  
BETunit specifically depends on just-in-time 
generation to avoid huge memory requirements.  
Korat, like BETUnit, has test domains from which 
values are chosen.  Unlike Korat,  BETUnit 
incorporates the generation of the combinations into 
the domain objects from which the elements of the 
combination are drawn.  This follows the 
expert/object animation pattern in object oriented 
programming.   In the case of Korat, the combining 
mechanism is built into the system, making it more 
difficult to use alternative combining strategies such 
as all-pairs as opposed to all-combos. 
 The emphasis of BET is different from Korat.  In 
JML/Junit and Korat the emphasis is on fully 
automatic testing. The emphasis in BETUnit is 
finding elusive bugs. It assists the user by providing 
automated test data generation classes that can be 
used to focus BET on possible elusive bug hiding 
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places.  Ongoing work focuses on the automated 
elusive bug detection aspect of BETUnit.   

6 SUMMARY AND FUTURE 
WORK 

Testing for elusive bugs involves running tests that 
explore different kinds of input combinations.  
Testing using rules that are based on specific 
application-oriented kinds of combinations has not 
been generally successful. There are often too many 
combinations and, in any case, we do not know what 
combinations to look at until after the defect has 
been discovered and analyzed.  One way to solve 
this problem is to use some form of bounded 
exhaustive testing.  However, we do not want to do 
this just for the sake of automating testing, we want 
to maintain some control over the combinatory 
mechanisms.  BetUnit accomplishes this, both in the 
way it is a subspecialty of JUnit, and its use of 
separately defined combinatory mechanisms.   
 In our work we developed the concept of a BET 
Pattern.  This is a test pattern that offers suggestions 
on certain aspects of BET Testing.  One area of BET 
Patterns is test data generation where we defined two 
combinatory patterns: Permutation and Stratified 
Permutation.  Both were applied to an Account 
Break example.  We also found that we needed to 
consider BET-oriented oracle patterns.  The 
effectiveness of postconditions for oracles, where 
they correspond to logical expressions, is too 
limited.  As is well known in testing, many programs 
have an algorithmic rather than a declarative 
specification.  For such applications we need a 
secondary version of the application program to test 
the output of the prime application program.  The 
problem with this approach is that the two versions 
may contain the same defects.  One way of avoiding 
this is to use different design strategies.  We have 
identified several kinds of oracle design patterns, 
including the Sequence Synchronizing Oracle 
pattern used in the Account Break example, that 
produce "orthogonal" application program designs.  
In this example, the input generator returns certain 
metadata along with the suggested input.  This 
metadata makes it possible to write a simpler oracle 
version of the program.  More specifically, instead 
of waiting for some condition to happen during a 
computation, it knows in advance from the metadata 
exactly when it will happen.  At the implementation 
level, this allows simple "do" loops instead of 
complex "while" loops. 

 In the version of BET described earlier, each 
BETCase has a single domain generator.  This 
means that all of the test methods defined in a single 
BETCase must use the same parameters.  In a way 
this is more limited than the Iowa approach.  In that 
approach, the test values for the sets of test method 
parameters must all be defined by a common set of 
type finitizations, but each test method may have a 
different subset, i.e. the test methods do not have to 
have the same parameters.  This limitation could be 
removed in BetUnit by allowing the definition of 
multiple Domain variables in a BETCase, which was 
included in our prototype.   
 In the Account Break example, BETUnit was 
successfully applied using the Permutation 
Generator BET pattern and the Synchronized 
Sequence Oracle pattern.  So far, only a small 
number of domain generators have been 
implemented.  A solid library of complex and 
primitive domains will be needed.  We are now 
doing this, and applying our test approach to a wide 
variety of problems.  The version of BETUnit 
described in this paper is based on JUnit 3.8. This 
provided a very flexible tool. We are now exploring 
the use of JUnit 4 with BETUnit to see if its 
advantages are maintained in this context. In 
addition, we are examining alternative BET 
strategies using frameworks other than JUnit.   
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