
INTEGRATING A DISTRIBUTED INSPECTION TOOL WITHIN
AN ARTEFACT MANAGEMENT SYSTEM1

Andrea De Lucia, Fausto Fasano, Genoveffa Tortora
Dipartimento di Matematica e Informatica, University of Salerno, Via Ponte Don Melillo, Fisciano (SA), ITALY

Giuseppe Scanniello
Dipartimento di Matematica e Informatica, University of Basilicata, Viale Dell'Ateneo, Macchia Romana, Potenza, ITALY

Keywords: Software Inspection, Synchronous communication, Global Software Engineering, Process Support Systems.

Abstract: We propose a web based inspection tool addressing the problem of software inspection within a distributed
development environment. This tool implements an inspection method that tries to minimise the
synchronous collaboration among team members using an asynchronous discussion to resolve the conflicts
before the traditional synchronous meeting. The tool also provides automatic merging and conflict
highlighting functionalities to support the reviewers during the pre-meeting refinement phase. Information
about the inspection progress, which can be a valuable support to make inspection process related decisions
is also provided. The inspection tool has been integrated within an artefact management system, thus
allowing the planning, scheduling, and enactment of the inspection within the development process and
integrating the review phase within the overall artefact lifecycle.

1 INTRODUCTION

Software inspection is a widely accepted and
effective practice to discover defects within software
artefacts. The success of inspection is due to early
defect detection, when the cost of defect removal is
less (Macdonald and Miller, 1998).

In a distributed setting, as the global software
engineering, geographical distance becomes a
critical factor for the enactment of a traditional
inspection process (Fagan, 1976). Traditional
inspection practices consider the enactment of a
synchronous meeting as essential, while more recent
findings question its utility. Indeed, studies
demonstrating that an asynchronous discussion can
be as effective as a face-to-face meeting have been
proposed (Johnson and Tjahjono, 1998) (Lanubile et
al., 2003) (Macdonald and Miller, 1998)
(Mashayekhi et al., 1994).

In this paper we present an inspection process
and a Web-based Artefact Inspection Tool (WAIT),
where a preliminary asynchronous discussion is
performed after the preparation phase and before the
synchronous meeting. Concerning the proposed
process we modified the structured inspection
process proposed by Fagan (1976) according to the
results presented in Damian et al. (2006), Johnson
and Tjahjono (1998), and Lanubile et al. (2003). In
particular, we introduce the refinement phase to
prune the conflicts and duplication arising from an
automatic merge of the defect logs after the
detection phase. The tool highlights the conflicts and
guides the involved software engineers in a
refinement of the merged defect log to be discussed
during the meeting. The refinement phase aims at
resolving all the conflicts in the defect log and at
removing the majority of the false defects. Based on
the result of this phase the moderator can decide
whether to perform the synchronous meeting, force a
further analysis of the individual defect logs, or
conclude the inspection and send the defect log to
the author for the Follow Up phase.

1 This research has been supported by the project METAMORPHOS
(MEthods and Tools for migrAting software systeMs towards web and
service Oriented aRchitectures: exPerimental evaluation, usability, and
technology tranSfer), funded by MiUR (Ministero dell’Università e della
Ricerca) under grant PRIN-2006-2006098097.

WAIT has been integrated within ADAMS (De
Lucia et al., 2004) (ADvanced Artefact Management

184
De Lucia A., Fasano F., Tortora G. and Scanniello G. (2007).
INTEGRATING A DISTRIBUTED INSPECTION TOOL WITHIN AN ARTEFACT MANAGEMENT SYSTEM.
In Proceedings of the Second International Conference on Software and Data Technologies - SE, pages 184-189
DOI: 10.5220/0001332901840189
Copyright c© SciTePress

System), an artefact-based process support system
for the management of human resources, projects,
and software artefacts. The integration of the
inspection process tool within ADAMS aims at
integrating quality management functionalities
within the software process support system, thus
allowing the planning, scheduling, and enactment of
the inspection within the development process and
integrating the review phase within the overall
lifecycle of software artefacts.

The remainder of the paper is organised as
follows: Section 2 discusses the related work while
Section 3 presents an overview of ADAMS. Section
4 illustrates the inspection process and tool while
Section 5 concludes the paper.

2 RELATED WORK

The usefulness and acceptance of software
inspection in academic and industrial settings, have
contributed to the development of several tools
supporting the inspection process. For instance,
ICICLE (Brothers et al., 1990) addresses the
inspections of C and C++ code, making use of
specific knowledge on the programming language to
assist during the defect discovery phase. However,
this approach does not results appropriated to review
software artefacts of different types.

Knight and Meyer (1991) propose InspeQ
(Inspecting software in phases to ensure Quality), a
toolset implementing the phased inspection
technique (Knight and Meyers, 1993). This
technique aims at improving the rigour, efficiency,
and repeatability of the inspection of software
products by examining the artefacts in a series of
small inspections termed phases. Each phase aims at
ascertaining if the artefact possesses some desirable
property. InspeQ does not support distributed
meeting and decision support is not provided.

Scrutiny (Gintell et al., 1993) is a collaborative
and distributed system based on an inspection
process similar to the Fagan model. In particular,
Scrutiny adds the verifier role, to ensure that all the
defects founded during the inspection are addressed
by the author. However, Scrutiny does not provide
support for checklist based inspections and the
meeting support is only synchronous.

CSI (Mashayekhi, 1993) (Collaborative Software
Inspection) adopts the Humphrey’s inspection
process (Humphrey, 1989). CSI supports annotations
by creating hyperlinks between the document and
the reviewers’ annotations. The inspection manager
reviews the annotations and makes them into one

list, which is successively discussed during the
meeting. The discussion phase is synchronous, while
the decision support is not provided.

The Humphrey’s process is also implemented in
AISA (Stein et al., 1997) (Asynchronous Inspection
of Software Artifacts) to inspect graphical
documents. AISA uses a web client to visualise
documents that are prepared as clickable image
maps. The reviewers annotate documents using the
coordinates of the image portion clicked. The only
support provided by the tool is the notification of
inspection completion by means of a message sent to
the inspection team when all reviewers have finished
the collection phase. The drawback is that
annotations are available to all the participants, thus
influencing the inspection members. To overcome
this drawback, InspectA (Murphy and Miller, 1997)
replaces the web publishing approach with e-mail
massages that are sent only when all the detection
phases are completed. In InspectA, the moderator
does not have any progress information of the
detection phase. Thus, the only way to know that a
reviewer has completed the inspection is the
receiving of the email generated at the end of the
phase. This does not support the moderator in case
an inspector has not completed the inspection.

The tool CSRS (Johnson, 1994) (Collaborative
Software Review System) supports different
checklist based inspection processes by using a
process modelling language. CSRS distinguishes
between a private review phase, where individual
review of the artefact is performed and annotations
are hidden to the other inspectors, and a public
review phase, which represents an asynchronous
meeting. Differently from our approach, support for
synchronous meeting to address unresolved conflicts
is not provided. Even ASSIST (Macdonald and
Miller, 1998) (Asynchronous/Synchronous Software
Inspection Support Tool) is designed to support
different inspection processes. To reduce the effort
to inspect a software artefact, ASSIST provides a
checklist browser implementing active checklists,
which records answers, monitors the checklist usage,
and visualises cross-references. Meeting support is
provided by a whiteboard and video and audio tools.
ASSIST also provides a facility to merge multiple
lists of defects using their similarity.

Lanubile et al. (2003) propose a web-based tool,
called IBIS (Internet-Based Inspection System),
which implements a reengineered Fagan’s inspection
process. In particular, the adopted process replaces
the preparation and meeting phases of the Fagan’s
process with three new sequential phases: discovery,
collection, and discrimination. The last of these

INTEGRATING A DISTRIBUTED INSPECTION TOOL WITHIN AN ARTEFACT MANAGEMENT SYSTEM

185

phases can be skipped to save time and coordination
overhead. IBIS presents several similarities with our
approach. The main differences with our approach
rely on the discrimination phase that is based on a
forum with a voting mechanism. Moreover, we
provide the moderator information to support
him/her during the inspection process decisions.

None of these tools are integrated within a
process support system. As a consequence they do
not manage the inspection process within the
software development process, providing
functionalities to link the review phase to the
software artefact life cycle and maintain and easily
recover inspection data during software evolution.

3 ADAMS OVERVIEW

ADAMS is an artefact-based process support
system. It enables the definition of a software
development process in terms of the artefacts to be
produced and the relations among them. To this aim,
ADAMS emphasises the artefact life cycle by
associating software engineers with the different
operations they can perform on each artefact. This
feature, together with the resource permissions
definition and management, represents a first level
of process support and allows the project manager to
focus on practical problems involved in the process
and to avoid getting lost in the complexity of process
modelling. ADAMS also enables process
management in a flexible way, giving managers the
possibility of changing the state of an artefact, the
associated resources and the related permissions.

ADAMS has a web-based architecture and
includes several subsystems. The Artefact
Management Subsystem is the core subsystem of
ADAMS and provides functionalities to manage the
artefacts of a project and concurrent development of
software engineers. This subsystem is used to create,
modify, and delete artefacts, as well as to manage
the artefact lifecycle and versioning. The Resource
Management Subsystem manages human resources
that can be allocated on projects as well as on single
software artefacts. The Traceability Management
Subsystem enables the management of traceability
links between related software artefacts, which can
be also visualised and used for impact analysis
during software evolution. The Cooperative
Development Subsystem provides synchronous
collaborative modelling functionalities, such as
allowing distributed team members to discuss,
model, and modify the same UML diagram. The
Quality Management Subsystem is responsible for
quality assurance within the software project, such

as the inspection process management functionality
described in this paper. Finally, the Event &
Notification Management Subsystem is used by
ADAMS to generate and deliver notifications
concerning the project. To enhance the context
awareness level, notifications are also propagated
across the traceability graph, that is the graph having
artefacts as nodes and traceability links as edges.

4 INSPECTION PROCESS AND
TOOL

The inspection process proposed in this paper is
shown in Figure 1. The phases Overview,
Refinement, and Inspection Meeting are optional and
are performed considering the software artefact and
the aim of the inspection. The inspection process has
been implemented in WAIT (Web Based Inspection
Tool). In the following, we detail the phases of the
proposed inspection process and describe an
example of application of WAIT on a Java class.

Figure 1: Reengineered Inspection Process.

4.1 Planning

During the Planning phase the quality manager
specifies which artefact version must undergo a
formal review process, defines or selects an existing
checklist, and compose the inspection team. All
these functionalities are accomplished by using the
process support, human resources, and quality
management functionalities of ADAMS. After this
phase all the inspection participants receive a
notification containing the details of the inspection
and a new task appears in their to-do-lists.

In our example, the inspection moderator selects
three members and creates the inspection team. The
quality manager specifies three check items for the
checklist to be used during the inspection of the Java

ICSOFT 2007 - International Conference on Software and Data Technologies

186

class. In particular, the checks address the use of
naming conventions for the identifiers, the code
indentation, and the identifier meaningfulness.

4.2 Overview

In the Overview phase, the artefact author explains
the design and the logic of the software artefact to
the inspectors. To this aim, he/she produces a
document that briefly describes the purpose and the
scope of the artefact to be inspected and then
deploys it in ADAMS. The inspection mailing list
managed by ADAMS is used to notify all the
inspection participants. In our example, this results
in a notification sent to the reviewers containing the
document produced by the artefact’s author, the
schedule of the inspection, and information about
the Java class to be inspected.

4.3 Discovery

During the Discovery phase, the inspectors analyse
the artefact and take note of the candidate defects by
highlighting all the cases where the artefact does not
comply with the control checklist. WAIT supports
the inspector during this phase by recording the
identified defect, its severity, a comment, its location
within the software artefact in terms of page and line
numbers, or picture/table sequential number (see
Figure 2).

Anytime in this phase, the moderator can
visualise the inspector’s defect log, the check items
processed or not processed as well as a preview of
the merged defect logs containing the inspection
output produced by the inspection team. This
information can be used to decide whether to stop
the detection phase and start the next phase.
However, even in case the moderator does not
access this information, ADAMS notifies him/her by

sending an event as soon as all the inspectors have
completed the discovery phase.

In our example, the three inspectors fill in the
defect logs by specifying each line in the Java class
that does not respect a checklist item. In particular,
regarding the first check item (i.e., respect of the
naming conventions), the inspectors discover a
different set of defects, while they agree on three
defects for the second check item (i.e., the code
indentation). None of the inspectors discovers
defects for the third check item (i.e., meaningfulness
of the identifiers). This situation is available to the
inspection moderator. In fact, the tool notifies
him/her about the conflict for the first check item
and reports the number of discovered defects for the
remaining checks.

4.4 Refinement

When the detection phase is completed, the
inspection moderator accesses the defect log,
containing all the defects identified by the
inspectors. In case the inspectors do not agree on the
defects for a checklist item, WAIT highlights it to
the moderator (see Figure 3), who is allowed to
decide if the refinement phase must be enacted. In
this case, the tool sends an email containing the
conflict list to the inspection members. This email
also aims at notifying that the conflicts can be
analysed in order to get an agreement. The main
goal of this phase is to remove false defects and to
build consensus on the true defects. As suggested by
the empirical study presented by Lanubile et al.
(2003) we consider a defect as a true defect when at
least two reviewers recognise it. In this case WAIT
does not highlight the defect. However, the
minimum number of reviews required to
automatically get an agreement can be customised
according to the inspection process constraints.

Figure 2: Defect identification.

INTEGRATING A DISTRIBUTED INSPECTION TOOL WITHIN AN ARTEFACT MANAGEMENT SYSTEM

187

Figure 3: Merged defect list (inspector’s view).

During the Refinement phase, the inspector
accesses the merged defect list and selects one of the
defects that caused the conflict. To assist the
inspector during this phase, WAIT highlights the
conflicts using a different colour for the conflicts,
and provides hypertextual links to the defect details.
By accessing the defect details the inspector decides
whether it is an actual defect or a false positive. To
this end, the inspector may decide to further analyse
the considered software artefact. Note that the
merged defect list is shared among the members of
the inspection team. Hence, when a conflict is
solved by an inspector, it is removed even from the
lists of the remaining inspectors. When all the
conflicts for a checklist item are solved, the
corresponding highlighting is removed too. This
phase is not mandatory, so the moderator can decide
to skip it and directly resolves the conflicts on the
identified defects (e.g., low number of defects).

In our example, the inspectors focus on the first
checklist item (naming conventions). However,
despite agreeing on most of the defects, two
conflicts are not solved. To this aim, the inspection
moderator decides to schedule a synchronous
meeting to resolve the conflict.

4.5 Inspection Meeting

The synchronous inspection meeting component is
implemented as a Java Applet and is eventually used
to discuss on unsolved conflicts. When an inspector
accesses the inspection meeting tool (see Figure 4),
the result of the inspection process of each inspector
is shown as well as the moderator decision.
Inspectors can access the defect logs of the other
inspectors grouped by checklist item. However, only
the column regarding the logged inspector is
editable. The checkbox in the inspector’s column is
used to indicate whether the artefact is compliant
with the checklist item. The tool automatically
deselects this checkbox when defects are discovered.
Communication among the inspectors is further
supported by a chat. Note that the moderator has

also the possibility to fill in his/her own checklist
and conclude the inspection process specifying
whether the artefact can be baselined or not. The
revision passes when all the checklist items are
checked. Whether an agreement is not reached the
moderator response is considered. This phase can be
skipped in case the number of conflicts is directly
manageable by the moderator or the time distance
does not permit a meeting.

In our example, the three inspectors access the
meeting and discuss on the two unsolved conflicts,
classifying them as true defects.

4.6 Rework and Follow up

In case defects have been identified, the author has
to fix them during the Rework phase. Once the
defects have been addressed, the author creates a
new version of the artefact that is validated by the
moderator during the Follow Up phase. As a result a
new baseline of the artefact can be created or a
further re-inspection can be required. It is worth
noting that the system maintains the defect logs for
each of the artefact version. Thus, in case the
artefact undergoes several inspections, it is possible
to access the defect logs for each artefact version.

5 FINAL REMARKS

In this paper we have presented an inspection
process whose aim is to minimise synchronous
collaboration among geographical dispersed
reviewers during the identification of defects in
software artefacts. To this end, we modified the
Fagan’s method with an asynchronous discussion
before performing a meeting. The asynchronous
discussion aims at removing false defects resolving
conflicts on the identified defects. The process has
been then implemented in a Web-based Artefact
Inspection Tool (WAIT), which has been integrated
within a process support system, namely ADAMS
(De Lucia et al., 2004).

In order to assess the usefulness of the proposed
tool and process, we carried out a controlled
experiment (details can be found at
http://www.scienzemfn.unisa.it/scanniello/CExp_2/.
The experiment aimed at comparing the proposed
inspection process and the Fagan’s method in terms
of time required to accomplish the inspection
process as well as the number of identified true and
false defects. The experiment revealed that the
synchronous meeting is generally not necessary as
the number of unsolved conflicts at the end of the
Refinement phase is very low and can be generally
managed by the inspection moderator.

ICSOFT 2007 - International Conference on Software and Data Technologies

188

Figure 4: Synchronous meeting.

We also observed that reviewers adopting our
process and tool spent less time to inspect a software
artefact with respect to the Fagan’s method.
Moreover, the inspection teams were able to identify
more true defects and more false positives when our
inspection process and tool were adopted. A larger
number of false defects might be acceptable in a
distributed setting where the effort required to
discard false positives can be repaid by the
possibility to avoid a meeting.

Future work will be devoted to add features to
further simplify the defect localisation within the
software artefact. A second direction should aim at
adding new features to better support optional
synchronous meetings. Moreover, we are
investigating the impact of face-to-face versus tool
mediated synchronous meeting with respect to the
number of true defects and false positive. This can
be useful in case time distance is not an issue, but
moving people might be a problem.

REFERENCES

Brothers L.R., Sembugamoorthy V., and Muller M., 1990.
“ICICLE: Groupware for code inspections”, Proc. of
ACM Conf. on Computer Supported Cooperative
Work, Los Angeles, CA, USA, pp.169-181.

Damian D., Lanubile F., and Mallardo T., 2006. “An
Empirical Study of the Impact of Asynchronous
Discussions on Remote Synchronous Requirements
Meetings”, Lecture Notes in Computer Science, vol.
3922, pp.155-169.

De Lucia A., Fasano F., Francese R., and Tortora G.,
“ADAMS: an Artefact-based Process Support
System”, Proc. of 16th International Conference on
Software Engineering and Knowledge Engineering,
Banff, Alberta, Canada, 2004, pp. 31-36

Fagan M.E., 1976. “Design and Code Inspections to
Reduce Errors in Program Development”, IBM
Systems Journal, vol. 15, no. 3, pp.182-211.

Gintell J.W., Arnold J., Houde M., Kruszelnicki J.,
McKenney R., and Memmi G., 1993. “Scrutiny: a
collaborative inspection and review system”, Proc. of
the 4th European Conf. on Software Engineering,
pp.344-360.

Humphrey W.S., 1989. “Managing the Software Process”,
SEI Series In Software Engineering, Addison-Wesley
Longman Publishing, Boston, MA, USA.

Johnson P.M. and Tjahjono D., 1998. “Does Every
Inspection Really Need a Meeting?”, Empirical
Software Engineering, vol.3, no.1, pp.9-35

Knight J.C., and Meyers E.A., 1991. “Phased inspections
and their implementation”, Software Engineering
Notes, vol. 16, no.3, pp.29-35.

Knight J.C. and Meyers E.A., 1993. “An improved
inspection technique”, Communications of the ACM,
vol.36, no.11, 1993, pp.51-61.

Lanubile F., Mallardo T., and Calefato F., 2003. “Tool
Support for Geographically Dispersed Inspection
Teams”, Software Process: Improvement and
Practice, vol.8, no.4, Wiley InterScience, pp.217-231.

Macdonald F. and Miller J., 1998. “A Comparison of
Tool-Based and Paper-Based Software Inspection”,
Empirical Software Engineering, vol.3, no.3,
pp.233-253

Mashayekhi V., Drake J.M., Tsai W.T., and Reidl J., 1993.
“Distributed, collaborative software inspection”, IEEE
Software, vol.10, no.5, pp.66-75.

Mashayekhi V., Feulner C., and Reidl J., 1994. “CAIS:
collaborative asynchronous inspection of software”,
Proc. of the 2nd ACM Symposium on the Foundations
of Software Engineering, ACM Press, pp. 21-34.

Murphy P. and Miller J., 1997. “A process for
asynchronous software inspection”, Proc. of the 8th
Int. Workshop on Software Technology and
Engineering Practice, London, UK, pp.96-104.

Stein M., Riedl J., Harner S.J., and Mashayekhi V., 1997.
“A case study of distributed, asynchronous software
inspection”, Proc. of the 19th Int. Conf. on Software
Engineering, Boston, MA, USA, pp.107-117.

INTEGRATING A DISTRIBUTED INSPECTION TOOL WITHIN AN ARTEFACT MANAGEMENT SYSTEM

189

