MULTI-CRITERION GENETIC PROGRAMMING WITH NEGATIVE SELECTION FOR FINDING PARETO SOLUTIONS

Jerzy Marian Balicki

2007

Abstract

Multi-criterion genetic programming (MGP) is a relatively new approach for a decision making aid and it can be applied to determine the Pareto solutions. This purpose can be obtained by formulation of a multi-criterion optimization problem that can be solved by genetic programming. An improved negative selection procedure to handle constraints in the MGP has been proposed. In the test instance, both a workload of a bottleneck computer and the cost of system are minimized; in contrast, a reliability of the distributed system is maximized.

References

  1. Balicki, J., 2006. Multicriterion Genetic Programming for Trajectory Planning of Underwater Vehicle. Int. Journal of Computer Science and Network Security, Vol. 6, No. 12, December 30, 1-6.
  2. Balicki, J., 2005. Immune Systems in Multi-criterion Evolutionary Algorithm for Task Assignments in Distributed Computer System. Lectures Notes in Computer Science, Vol. 3528, 51-56.
  3. Bernaschi, M., Castiglione, F., Succi, S., 2006. A High Performance Simulator of the Immune System. Future Generation Computer System, Vol. 15, 333-342.
  4. Coello Coello, C. A., Van Veldhuizen, D. A., Lamont, G.B., 2002. Evolutionary Algorithms for Solving Multi-Objective Problems. Kluwer Academic Publishers, New York.
  5. Deb, K., 2001. Multi-Objective Optimization using Evolutionary Algorithms, John Wiley & Sons, Chichester.
  6. Fonseca, C. M., Fleming, P. J., 1995. An Overview of Evolutionary Algorithms in Multiobjective Optimisation, Evolutionary Computation, Vol. 3, No. 1, 1-16.
  7. Forrest, S., Perelson, A.S., 1991, Genetic Algorithms and the Immune System. Lecture Notes in Computer Science, 320-325.
  8. Jerne, N.K., 1984. Idiotypic Networks and Other Preconceived Ideas. Immunological Revue, Vol. 79, 5-25.
  9. Kim, J. and Bentley, P. J., 2002. Immune Memory in the Dynamic Clonal Selection Algorithm. Proc. of the First Int. Conf. on Artificial Immune Systems, Canterbury, 57-65.
  10. Koza J.R., Keane M. A., Streeter M. J., Mydlowec W. , Yu J., and Lanza G., 2003. Genetic programming IV. Routine Human-Competitive Machine Intelligence. Kluwer Academic Publishers, New York.
  11. Koza, J. R., 1992. Genetic Programming: On the Programming of Computers by Means of Natural Selection. Cambridge, MA: The MIT Press.
  12. Samuel A. L., 1960. Programming Computers to Play Games. Advances in Computers 1: 165-192.
  13. Sheble, G. B., Britting, K., 1995. Refined Genetic Algorithm - Economic Dispatch Example. IEEE Transactions on Power Systems, Vol. 10, No. 2, 117- 124.
  14. Weglarz, J., Nabrzyski, J., Schopf, J., 2003, Grid Resource Management: State of the Art and Future Trends. Kluwer Academic Publishers, Boston.
  15. Wierzchon, S. T., 2005. Immune-based Recommender System. In O. Hryniewicz, J. Kacprzyk, J. Koronacki and S. T. Wierzchon (eds.) Issues in Intelligent Systems. Paradigms. Exit, Warsaw, 341-356.
  16. Zitzler, E., Deb, K., and Thiele, L., 2000. Comparison of Multiobjective Evolutionary Algorithms: Empirical Results. Evolutionary Computation, Vol. 8, No. 2 173- 195.
Download


Paper Citation


in Harvard Style

Marian Balicki J. (2007). MULTI-CRITERION GENETIC PROGRAMMING WITH NEGATIVE SELECTION FOR FINDING PARETO SOLUTIONS . In Proceedings of the Second International Conference on Software and Data Technologies - Volume 1: ICSOFT, ISBN 978-989-8111-05-0, pages 120-127. DOI: 10.5220/0001336201200127


in Bibtex Style

@conference{icsoft07,
author={Jerzy Marian Balicki},
title={MULTI-CRITERION GENETIC PROGRAMMING WITH NEGATIVE SELECTION FOR FINDING PARETO SOLUTIONS},
booktitle={Proceedings of the Second International Conference on Software and Data Technologies - Volume 1: ICSOFT,},
year={2007},
pages={120-127},
publisher={SciTePress},
organization={INSTICC},
doi={10.5220/0001336201200127},
isbn={978-989-8111-05-0},
}


in EndNote Style

TY - CONF
JO - Proceedings of the Second International Conference on Software and Data Technologies - Volume 1: ICSOFT,
TI - MULTI-CRITERION GENETIC PROGRAMMING WITH NEGATIVE SELECTION FOR FINDING PARETO SOLUTIONS
SN - 978-989-8111-05-0
AU - Marian Balicki J.
PY - 2007
SP - 120
EP - 127
DO - 10.5220/0001336201200127