MLP model, among which the reduction of compu-
tation time. This is due to the way the parameters are
estimated: least squares formula in the former model
and iterative algorithm in the latter.
The perspective of this study is the implementa-
tion of the proposed structures for model predictive
control in industrial processes.
REFERENCES
Bezdec, J. (1973). Fuzzy mathematics in pattern classifica-
tion. PhD thesis, Applied Math. Center, Cornell Uni-
versity Ithaca.
Bielikova, M. (2005). Recurrent neural network training
with the extended kalman filter. IIT. SRC, pages 57–
64.
Boukhris, A., Mourot, G., and Ragot, J. (2000). Nonlin-
ear dynamic system identification: a multiple-model
approach. Int. J. of control, 72(7/8):591–604.
Box, G. and Jenkins, G. (1970). Time series analysis,
forecasting and control. San Francisco, Holden Day,
pages 532–533.
Cheng, Y., Karjala, T., and Himmelblau, D. (1997). Closed
loop nonlinear process identification using internal re-
current nets. Neural Networks, 10(3):573–586.
Corradini, A. and Cohen, P. (2002). Multimodal speech-
gesture interface for hands-free painting on virtual pa-
per using partial recurrent neural networks for gesture
recognition. in Proc. of the Int’l Joint Conf. on Neural
Networks (IJCNN’02), 3:2293–2298.
Dreyfus, G. (2002). Rseaux de Neurones - Mthodologie et
applications. Eyrolles.
Elman, J. (1999). Finding structure in time. Cognitive Sci-
ence, 14(2):179–211.
Gao, Y. and Foss, A. (2005). Narmax time series model
prediction: feed forward and recurrent fuzzy neural
network approaches. Fuzzy Sets and Sytems, 150:331–
350.
Gasso, K. (2000). Identification de systmes dynamiques non
linaires: approche multi - modle. thse de doctorat de
l’INPL.
Huang, B., Rashid, T., and Kechadi, M.-T. (2005). A recur-
rent neural network recognizer for online recognition
of handwritten symbols. ICEIS, 2:27–34.
Huang, B., Rashid, T., and Kechadi, M.-T. (2006). Multi-
context recurrent neural network for time series appli-
cations. International Journal of Computational In-
telligence, 3(1):45–54.
Johansen, T. and Er, M. (1992). Nonlinear local model rep-
resentation for adaptive systems. In Proc. of the IEEE
Conf. on Intelligent Control and Instrumentation, vol-
ume 2, pages 677–682, Singapore.
Johansen, T. and Er, M. (1993). Constructing narmax using
armax. Int. Journal of Control, 58(5):1125–1153.
Jordan, M. (1986). Attractor dynamics and parallelism in
a connectionist sequential machine. In Proceedings
of IASTED International Conference of the Cognitive
Science Society. (Reprinted in IEEE Tutorials Series,
New York: IEEE Publishing Services, 1990), pages
531–546, Englewood Cliffs, NJ: Erlbaum.
Konur, U. and Okatan, A. (2004). Time series prediction
using recurrent neural network architectures and time
delay neural networks. ENFORMATIKA, pages 1305–
1313.
Li, N., Li, S. Y., and Xi, Y. G. (2004). Multi-model predic-
tive control based on the takagi-sugeno fuzzy models:
a case study. Information Sciences, 165:247–263.
Murray-Smith, R. and Johansen, T. (1997). Multiple Model
Approaches to Modeling and Control. Taylor and
Francis Publishers.
Orjuela, R., Maquin, D., and Ragot, J. (2006). Identifica-
tion des systmes non linaires par une approche multi-
modle tats dcoupls. Journes Identification et Modli-
sation Exprimentale JIME’2006 - 16 et 17 novembre -
Poitiers.
Palma, F. D. and Magni, L. (2004). A multimodel struc-
ture for model predictive control. Annual Reviews in
Control, 28:47–52.
Sjoberg, J., Zhang, Q., Ljung, L., Benveniste, A., De-
lyon, B., Glorennec, P., Hjalmarsson, H., and Judit-
sky, A. (1995). Nonlinear black-box modeling in sys-
tem identification: a unified overview. Automatica 31,
31(12):1691–1724.
Tomasz, J. and Jacek, M. (1997). Neural networks tool for
stellar light prediction. In Proc. of the IEEE Aerospace
Conference, volume 3, pages 415–422, Snowmass,
Colorado, USA.
Vartak, A., Georgiopoulos, M., and Anagnostopoulos, G.
(2005). On-line gauss-newton-based learning for
fully recurrent neural networks. Nonlinear Analysis,
63:867–876.
Vernieuwe, H., Georgieva, O., Baets, B., Pauwels, V., Ver-
hoest, N., and Troch, F. (2004). Comparison of data-
driven takagi-sugeno models of rainfall-discharge dy-
namics. Journal of Hydrology, XX:1–14.
Werbos, P. (1990). Backpropagation through time: What
it does and how to do it. Proceedings of the IEEE,
78(10):1550–1560.
Yang, W. Z., L.H., Y., and L., C. (2005). Narmax model
representation and its application to damage detection
for multi-layer composites. Composite Structures,
68:109–117.
IMPLEMENTATION OF RECURRENT MULTI-MODELS FOR SYSTEM IDENTIFICATION
321