, described in section 2.2, in
an automatic way according to the sensor noise.
Moreover, it would be interesting to develop the
FFF method for the actuator defaults.
REFERENCES
Andersson, P., 1985. Adaptive forgetting in recursive
identification through multiple. In. Proc. Int. J.
Control, pp. 1175-1193.
Campi, M., 1994. Performance of RLS Identification
Algorithms with Forgetting Factor: A Φ-Mixing
Approach, Journal of Mathematical Systems,
Estimation, and Control, Vol. 4, N° 3, pp. 1-25.
Carrasco, E. F., Rodriguez, J., Punal, A., Roca, E., Lema,
J. M., 2004. Diagnosis of acidification states in an
anaerobic wastewater treatment plant using a fuzzy-
based expert system, Control Engineering Practice,
12, pp. 59-64.
Evsukoff, A., Gentil, S., Montmain, J., 2000. Fuzzy
reasoning in co-operative supervision systems,
Control Engineering Practice, 8, pp. 389-407.
Fink, A., Fischer, M., Nelles, O., 2000. Supervision of
Non-linear Adaptive Controllers Based on Fuzzy
Models, Control Engineering Practice, 8(10), pp.
1093-1105.
Isermann, R., 1984. Process fault detection based on
modelling and estimation methods – A survey,
Automatica,vol. 20, n°4, pp. 387-404.
Isermann, R., 1997. Supervision, fault-detection and fault-
diagnosis methods-Advanced methods and
applications, Proc. Of the IMEKO world congress,
New Measurements – Challenges and Visions,
Tampere, Finland, vol. 1, n°4, pp. 1-28.
Isermann, R., 2005. Model-based fault detection and
diagnosis - Status and applications, Annual Reviews in
Control, Elsevier Ltd., pp. 71-85, Vol. 28, No. 1.
Jager, R., 1995. Fuzzy Logic in Control, Thesis
Technische Universiteit Delft, ISBN 90-9008318-9.
Jamouli, H., 2003. Génération de résidus directionnels
pour le diagnostic des systèmes linéaires stochastiques
et la commande tolérante aux fautes, Thesis,
University Henri Poincaré, Nancy 1.
Kroll, A., 1996. Identification of functional fuzzy models
using multidimensional reference fuzzy sets, Fuzzy
Sets & Systems, vol. 8, pp. 149-158.
Lafont, F., Balmat, J. F., Taurines, M., 2005. Fuzzy
forgetting factor for system identification, Third
International Conference on Systems, Signals &
Devices, Volume 1, Systems analysis & Automatic
Control, Sousse, Tunisia, March 21-24.
Liu, G., Toncich, D. J., Harvey, E. C., Yuan, F., 2005.
Diagnostic technique for laser micromachining of
multi-layer thin films, International Journal of
Machine Tools & Manufacture, 45, pp. 583-589.
Maquin, D., 1997. Diagnostic à base de modèles des
systèmes technologiques, Mémoire d’Habilitation à
Diriger des Recherches, Institut National
Polytechnique de Lorraine.
Noura, H., 2002. Méthodes d’accommodation aux défauts:
théorie et application, Mémoire d’Habilitation à
Diriger des Recherches, University Henri Poincaré,
Nancy 1.
Querelle, R., Mary, R., Kiupel, N., Frank, P. M., 1996.
Use of qualitative modelling and fuzzy clustering for
fault diagnosis, Proc. of world Automation Congress
WAC’96, Montpellier, France, vol. 5, n°4, pp. 527-
532.
Ripoll, P., 1999. Conception d’un système de diagnostic
flou appliqué au moteur automobile, Thesis, the
University of Savoie.
Sala, A., Guerra, T. M., Babuska, R., 2005. Perspectives
of fuzzy systems and control, Fuzzy Sets & Systems,
156, pp. 432-444.
Slama-Belkhodja, I., de Fornel, B., 1996. Commande
adaptative d'une machine asynchrone, J. Phys. III, Vol.
6, pp. 779-796.
Szederkényi, G., 1998. Model-Based Fault Detection of
Heat Exchangers, department of Applied Computer
Science University of Veszprém.
Trabelsi, A., Lafont, F., Kamoun, M., Enéa, G., 2004.
Identification of non-linear multi-variable systems by
adaptive Fuzzy Takagi-Sugeno model, International
Journal of Computational Cognition, ISBN 1542-
5908, vol. 2, n° 3, pp. 137-153.
Uhl, T., 2005. Identification of modal parameters for non-
stationary mechanical systems, Arch Appl Mech, 74,
pp. 878-889.
A FUZZY PARAMETRIC APPROACH FOR THE MODEL-BASED DIAGNOSIS
31