DUAL CONTROLLERS FOR DISCRETE-TIME STOCHASTIC AMPLITUDE-CONSTRAINED SYSTEMS

A. Królikowski, D. Horla

2007

Abstract

The paper considers a suboptimal solution to the dual control problem for discrete-time stochastic systems in the case of amplitude constraint imposed on the control signal. The objective of the control is to minimize the variance of the output around the given reference sequence. The presented approaches are based on: an MIDC (Modified Innovation Dual Controller) derived from an IDC (Innovation Dual Controller), a TSDSC (Two-stage Dual Suboptimal Control, and a PP (Pole Placement) controller. Finally, the certainty equivalence (CE) control method is included for comparative analysis. In all algorithms, the standard Kalman filter equations are applied for estimation of the unknown system parameters. Example of second order system is simulated in order to compare the performance of control methods. Conclusions yielded from simulation study are given.

References

  1. A°ström, H. and Wittenmark, B. (1989). Adaptive Control. Addison-Wesley.
  2. Bayard, D. (1991). A forward method for optimal stochastic nonlinear and adaptive control. IEEE Trans. Automat. Contr., 9:1046-1053.
  3. Bayard, D. and Eslami, M. (1985). Implicit dual control for general stochastic systems. Opt. Contr. Appl.& Methods, 6:265-279.
  4. Filatov, N. and Unbehauen, H. (2004). Dual Control. Springer.
  5. G.P. Chen, O. M. and Hope, G. (1993). Control limits consideration in discrete control system design. IEE Proc.-D, 140(6):413-422.
  6. Królikowski, A. (2000). Suboptimal lqg discrete-time control with amplitude-constrained input: dual versus non-dual approach. European J. Control, 6:68-76.
  7. Maitelliand, A. and Yoneyama, T. (1994). A two-stage dual suboptimal controller for stochastic systems using approximate moments. Automatica, 30:1949-1954.
  8. N.M. Filatov, H. U. and Keuchel, U. (1993). Dual poleplacement controller with direct adaptation. Automatica, 33(1):113-117.
  9. R. Milito, C.S. Padilla, R. P. and Cadorin, D. (1982). An innovations approach to dual control. IEEE Trans. Automat. Contr., 1:132-137.
  10. Sebald, A. (1979). Toward a computationally efficient optimal solution to the lqg discrete-time dual control problem. IEEE Trans. Automat. Contr., 4:535-540.
  11. Sworder, D. (1966). Optimal Adaptive Control Systems. Academic Press, New York.
  12. 20 20 20 20 20 40 40 40 40 40 60 t 60 60 60 60 t 80 80 80 80 80 100 100 100 100 100 120 120 120 120 120 0.8 1 1.2 1.4 1.6 1.8 2 Figure 2: Plots of performance indices for s2w = 0.05.
Download


Paper Citation


in Harvard Style

Królikowski A. and Horla D. (2007). DUAL CONTROLLERS FOR DISCRETE-TIME STOCHASTIC AMPLITUDE-CONSTRAINED SYSTEMS . In Proceedings of the Fourth International Conference on Informatics in Control, Automation and Robotics - Volume 3: ICINCO, ISBN 978-972-8865-84-9, pages 130-134. DOI: 10.5220/0001620401300134


in Bibtex Style

@conference{icinco07,
author={A. Królikowski and D. Horla},
title={DUAL CONTROLLERS FOR DISCRETE-TIME STOCHASTIC AMPLITUDE-CONSTRAINED SYSTEMS},
booktitle={Proceedings of the Fourth International Conference on Informatics in Control, Automation and Robotics - Volume 3: ICINCO,},
year={2007},
pages={130-134},
publisher={SciTePress},
organization={INSTICC},
doi={10.5220/0001620401300134},
isbn={978-972-8865-84-9},
}


in EndNote Style

TY - CONF
JO - Proceedings of the Fourth International Conference on Informatics in Control, Automation and Robotics - Volume 3: ICINCO,
TI - DUAL CONTROLLERS FOR DISCRETE-TIME STOCHASTIC AMPLITUDE-CONSTRAINED SYSTEMS
SN - 978-972-8865-84-9
AU - Królikowski A.
AU - Horla D.
PY - 2007
SP - 130
EP - 134
DO - 10.5220/0001620401300134