lation of kinematics and dynamic of mechanical sys-
tems. With its help, the behavior of different classes
of systems including non-autonomous and closed-
loop ones can be obtained with the guarantee of cor-
rectness, the option which is not given in tools based
on floating point arithmetics. Besides, the uncertainty
in parameters can be taken into account in a natural
way. Moreover, SMARTMOBILE is flexible and al-
lows the user to choose the kind of underlying arith-
metics according to the task at hand. The functional-
ity of the tool was demonstrated using three examples.
The main directions of the future development
will include enhancement of validated options for
modeling and simulation of closed-loop systems in
SMARTMOBILE as well as integration of further
verified solvers into its core.
REFERENCES
Auer, E. (2006). Interval Modeling of Dynamics for Multi-
body Systems. In Journal of Computational and Ap-
plied Mathematics. Elsevier. Online.
Auer, E., Kecskem
´
ethy, A., T
¨
andl, M., and Traczinski, H.
(2004). Interval Algorithms in Modeling of Multibody
Systems. In Alt, R., Frommer, A., Kearfott, R., and
Luther, W., editors, LNCS 2991: Numerical Software
with Result Verification, pages 132 – 159. Springer,
Berlin Heidelberg New York.
Auer, E., Rauh, A., Hofer, E. P., and Luther, W. (2006a).
Validated Modeling of Mechanical Systems with
SMARTMOBILE: Improvement of Performance by
VALENCIA-IVP. In Proc. of Dagstuhl Seminar
06021: Reliable Implementation of Real Number Al-
gorithms: Theory and Practice, Lecture Notes in
Computer Science. To appear.
Auer, E., T
¨
andl, M., Strobach, D., and Kecskem
´
ethy, A.
(2006b). Toward validating a simplified muscle ac-
tivation model in SMARTMOBILE. In Proceedings of
SCAN 2006. submitted.
Berz, M. and Makino, K. (1998). Verified integration of
ODEs and flows using differential algebraic methods
on high-order Taylor models. Reliable Computing,
4:361–369.
Berz, M. and Makino, K. (2002). COSY INFINITY Version
8.1. User’s guide and reference manual. Technical Re-
port MSU HEP 20704, Michigan State University.
de Figueiredo, L. H. and Stolfi, J. (2004). Affine arith-
metic: concepts and applications. Numerical Algo-
rithms, 37:147158.
Griewank, A. (2000). Evaluating derivatives: principles
and techniques of algorithmic differentiation. SIAM.
Griewank, A., Juedes, D., and Utke, J. (1996). ADOL–
C, a package for the automatic differentiation of algo-
rithms written in C/C++. ACM Trans. Math. Software,
22(2):131–167.
Hammer, R., Hocks, M., Kulisch, U., and Ratz, D. (1995).
C++ toolbox for verified computing I - Basic Numer-
ical Problems. Springer-Verlag, Heidelberg and New
York.
H
¨
orsken, C. (2003). Methoden zur rechnergest
¨
utzten
Toleranzanalyse in Computer Aided Design und
Mehrk
¨
orpersystemen. PhD thesis, Univerisity of
Duisburg-Essen.
Huckle, T. (2005). Collection of software bugs.
www5.in.tum.de/
∼
huckle/bugse.html
.
Kecskem
´
ethy, A. (1993). Objektorientierte Modellierung
der Dynamik von Mehrk
¨
orpersystemen mit Hilfe von
¨
Ubertragungselementen. PhD thesis, Gerhard Merca-
tor Universit
¨
at Duisburg.
Kecskem
´
ethy, A. and Hiller, M. (1994). An object-oriented
approach for an effective formulation of multibody
dynamics. CMAME, 115:287–314.
Klatte, R., Kulisch, U., Wiethoff, A., Lawo, C., and Rauch,
M. (1993). C–XSC: A C++ Class Library for Ex-
tended Scientific Computing. Springer-Verlag, Berlin
Heidelberg.
Kn
¨
uppel, O. (1994). PROFIL/BIAS — a fast interval li-
brary. Computing, 53:277–287.
Lerch, M., Tischler, G., Wolff von Gudenberg, J., Hofschus-
ter, W., and Kr
¨
amer, W. (2001). The Interval Library
filib++ 2.0
: Design, Features and Sample Pro-
grams. Technical Report 2001/4, Wissenschaftliches
Rechnen / Softwaretechnologie, Bergische Universit
¨
at
GH Wuppertal.
Lohner, R. (1988). Einschließung der L
¨
osung gew
¨
onlicher
Anfangs- und Randwertaufgaben und Anwendungen.
PhD thesis, Universit
¨
at Karlsruhe.
Lohner, R. (2001). On the ubiquity of the wrapping effect
in the computation of the error bounds. In Kulisch,
U., Lohner, R., and Facius, A., editors, Perspectives
on Enclosure Methods, pages 201–217. Springer Wien
New York.
Metropolis, N. and Ulam, S. (1949). The monte carlo
method. Journal of the American Statistic Associa-
tion, 44:335–341.
Moore, R. E. (1966). Interval Analysis. Prentice-Hall, New
York.
Nedialkov, N. S. (1999). Computing rigorous bounds on
the solution of an initial value problem for an ordi-
nary differential equation. PhD thesis, University of
Toronto.
Nedialkov, N. S. (2002). The design and implementation
of an object-oriented validated ODE solver. Kluwer
Academic Publishers.
Neumaier, A. (2002). Taylor forms — use and limits. Reli-
able Computing, 9:43–79.
Stauning, O. and Bendtsen, C. (2005). Fadbad++. Web
page
http://www2.imm.dtu.dk/
∼
km/FADBAD/
.
Traczinski, H. (2006). Integration von Algorithmen und Da-
tentypen zur validierten Mehrkrpersimulation in MO-
BILE. PhD thesis, Univerisity of Duisburg-Essen.
ICINCO 2007 - International Conference on Informatics in Control, Automation and Robotics
116