INNER AND OUTER APPROXIMATION OF CAPTURE BASIN USING INTERVAL ANALYSIS

Mehdi Lhommeau, Luc Jaulin, Laurent Hardouin

2007

Abstract

This paper proposes a new approach to solve the problem of computing the capture basin C of a target T. The capture basin corresponds to the set of initial states such that the target is reached in finite time before possibly leaving of constrained set. We present an algorithm, based on interval analysis, able to characterize an inner and an outer approximation C− ⊂ C ⊂ C+ of the capture basin. The resulting algorithm is illustrated on the Zermelo problem.

References

  1. Aubin, J. (1991). Viability theory. Birkhäuser, Boston.
  2. Batchelor, G.-K. (2000). An introduction to fluid dynamics. Cambridge university press.
  3. Bryson, A. E. and Ho, Y.-C. (1975). Applied optimal control : optimization, estimation, and control. Halsted Press.
  4. Cardaliaguet, P., Quincampoix, M., and Saint-Pierre, P. (1997). Optimal times for constrained nonlinear control problems without local controllability. Applied Mathematics and Optimization, 36:21-42.
  5. Cruck, E., Moitie, R., and Seube, N. (2001). Estimation of basins of attraction for uncertain systems with affine and lipschitz dynamics. Dynamics and Control, 11(3):211-227.
  6. Delanoue, N. (2006). Algorithmes numriques pour l'analyse topologique. PhD dissertation, Université d'Angers, ISTIA, France. Available at www.istia. univ-angers.fr/˜delanoue/.
  7. Kearfott, R. B. and Kreinovich, V., editors (1996). Applications of Interval Computations. Kluwer, Dordrecht, the Netherlands.
  8. L. Jaulin, M. Kieffer, O. Didrit, E. Walter (2001). Applied Interval Analysis, with Examples in Parameter and State Estimation, Robust Control and Robotics. Springer-Verlag, London.
  9. Lohner, R. (1987). Enclosing the solutions of ordinary initial and boundary value problems. In Kaucher, E., Kulisch, U., and Ullrich, C., editors, Computer Arithmetic: Scientific Computation and Programming Languages, pages 255-286. BG Teubner, Stuttgart, Germany.
  10. Moore, R. E. (1966). Interval Analysis. Prentice-Hall, Englewood Cliffs, NJ.
  11. Nedialkov, N.-S., Jackson, K.-R., and Corliss, G.-F. (1999). Validated solutions of initial value problems for ordinary differential equations. Applied Mathematics and Computation, 105:21-68.
  12. Saint-Pierre, P. (1994). Approximation of the viability kernel. Applied Mathematics & Optimization, 29:187- 209.
Download


Paper Citation


in Harvard Style

Lhommeau M., Jaulin L. and Hardouin L. (2007). INNER AND OUTER APPROXIMATION OF CAPTURE BASIN USING INTERVAL ANALYSIS . In Proceedings of the Fourth International Conference on Informatics in Control, Automation and Robotics - Volume 3: ICINCO, ISBN 978-972-8865-84-9, pages 5-9. DOI: 10.5220/0001625800050009


in Bibtex Style

@conference{icinco07,
author={Mehdi Lhommeau and Luc Jaulin and Laurent Hardouin},
title={INNER AND OUTER APPROXIMATION OF CAPTURE BASIN USING INTERVAL ANALYSIS},
booktitle={Proceedings of the Fourth International Conference on Informatics in Control, Automation and Robotics - Volume 3: ICINCO,},
year={2007},
pages={5-9},
publisher={SciTePress},
organization={INSTICC},
doi={10.5220/0001625800050009},
isbn={978-972-8865-84-9},
}


in EndNote Style

TY - CONF
JO - Proceedings of the Fourth International Conference on Informatics in Control, Automation and Robotics - Volume 3: ICINCO,
TI - INNER AND OUTER APPROXIMATION OF CAPTURE BASIN USING INTERVAL ANALYSIS
SN - 978-972-8865-84-9
AU - Lhommeau M.
AU - Jaulin L.
AU - Hardouin L.
PY - 2007
SP - 5
EP - 9
DO - 10.5220/0001625800050009