OPTIMIZATION MODEL AND DSS FOR MAXIMUM RESOLUTION DICHOTOMIES
James K. Ho, Sydney C. K. Chu, S. S. Lam
2007
Abstract
A topological model is presented for complex data sets in which the attributes can be cast into a dichotomy. It is shown that the relative dominance of the two parts in such a dichotomy can be measured by the corresponding areas in its star plot. An optimization model is proposed to maximize the resolution of such a measure by choice of configuration of the attributes, as well as the angles among them. The approach is illustrated with the case of online auction markets, where there is a buyer-seller dichotomy as to whether conditions are favourable to buyers or sellers. An implementation of the methodology in a spreadsheet based DSS is demonstrated. Its ease of use is promising for diverse applications.
References
- Chambers, J., Cleveland, W., Kleiner, B. and Tukey, P., 1983. Graphical Methods for Data Analysis, Belmont, CA: Wadsworth Press.
- Cline, A. K., 1974. 'Scalar- and planer-valued curve fitting using splines under tension', Communications of the Association for Computing Machinery 17: pp. 218-220.
- Ho, J. K.,2004. 'Topological analysis of online auction markets', International Journal of Electronic Markets 14(3): pp. 202-213.
- Ho, J. K., 2005. 'Maximum resolution dichotomy for global diffusion of the Internet', Communications of the Association for Information Systems 16:pp.797- 809.
- Ho, J. K., 2006a. 'Maximum resolution dichotomy for investment climate indicators', International Journal of Business Environment 1(1): pp.126-135.
- Ho, J. K., 2006b. 'Maximum resolution dichotomy for customer relations management', in Zanansi, A. et al (eds.) Data Mining VII, WIT Press, Southampton, pp. 279-288.
- Ho, J. K. and Chu, S. C. K. (2005) 'Maximum resolution topology for multi-attribute dichotomies', Informatica 16 (4): pp. 557-570.
- Ho, J. K. and Chu, S. C. K. and Lam, S.S. (2007) 'Maximum resolution topology for online auction markets', International Journal of Electronic Markets 17(2) (to appear).
- Hoffman, Patrick and Grinstein, George, 2001. 'A survey of visualizations for high-dimensional data mining', in Usama Fayyad et al (eds.) Information Visualization in Data Mining and Knowledge Discovery, Morgan Kaufmann: pp. 47-82.
- Roth, Alvin E. and Ockenfels, Axel (2002) 'Last minute bidding and the rules for ending second-price auctions: theory and evidence from A natural experiment on the Internet', American Economic Review 92(4): pp. 1093-1103.
- Scniederjans, M. J., 1995. Goal Programming Methodology and Applications, Kluwer publishers, Boston.
- Shneiderman, B., 1992. Tree visualization with tree-maps: a 2-D space-filling approach. ACM Transactions on Graphics 11: pp. 92-99
- Tukey, J.W., 1997. Exploratory Data Analysis. AddisonWesley, Reading, MA.
- Vandewalle, N., Brisbois, F., Tordoir, X., 2001. 'Nonrandom topology of stock markets'. Quantitative Finance 1: pp. 372-374.
Paper Citation
in Harvard Style
K. Ho J., C. K. Chu S. and S. Lam S. (2007). OPTIMIZATION MODEL AND DSS FOR MAXIMUM RESOLUTION DICHOTOMIES . In Proceedings of the Fourth International Conference on Informatics in Control, Automation and Robotics - Volume 1: ICINCO, ISBN 978-972-8865-82-5, pages 355-358. DOI: 10.5220/0001630803550358
in Bibtex Style
@conference{icinco07,
author={James K. Ho and Sydney C. K. Chu and S. S. Lam},
title={OPTIMIZATION MODEL AND DSS FOR MAXIMUM RESOLUTION DICHOTOMIES},
booktitle={Proceedings of the Fourth International Conference on Informatics in Control, Automation and Robotics - Volume 1: ICINCO,},
year={2007},
pages={355-358},
publisher={SciTePress},
organization={INSTICC},
doi={10.5220/0001630803550358},
isbn={978-972-8865-82-5},
}
in EndNote Style
TY - CONF
JO - Proceedings of the Fourth International Conference on Informatics in Control, Automation and Robotics - Volume 1: ICINCO,
TI - OPTIMIZATION MODEL AND DSS FOR MAXIMUM RESOLUTION DICHOTOMIES
SN - 978-972-8865-82-5
AU - K. Ho J.
AU - C. K. Chu S.
AU - S. Lam S.
PY - 2007
SP - 355
EP - 358
DO - 10.5220/0001630803550358