We have shown that, when used a multi library wavelet networks and a selection
procedure leads to results that are much more interesting than the classical architec-
ture initialization. The selection of “relevant” wavelets within a regular wavelet lat-
tice can also be performed by the technique of shrinkage. However, wavelet shrink-
age is usually studied with orthonormal (or biorthonormal) wavelet bases, restricted
to problems of small dimension.
As future research directions, we propose to use MLWNN in the case of adaptive self
tuning PID controllers. The MLWNN is needed to learn the characteristics of the
plant dynamic systems and make use of it to determine the future inputs that will
minimize error performance index so as to compensate the PID controller parameters.
References
1. S. Mallat, 1998. A wavelet tour of signal processing. academic press.
2. Q. Zang, 1997. Wavelet Network in Nonparametric Estimation. IEEE Trans. Neural Net-
works, 8(2):227-236.
3. Q. Zang et al., 1992. Wavelet networks. IEEE Trans. Neural Networks, vol. 3, pp. 889-898.
4. H. Bourlard, Y. Kamp, 1988. Autoassociation by multilayer perceptrons and singular
values decomposition, Biol. Cybernet. 59 (1988) 291-294.
5. A. Averbuch, D. Lazar, 1996. Image compression using wavelet transform and multiresolu-
tion decomposition, IEEE Trans. Image Process. 5 (1) 4-15.
6. G. Basil, J. Jiang, 1997. Experiments on neural network implementation of LBG vector
quantization, Research Report, Depart of Computer Studies, Loughborough University.
7. G. Candotti, S. Carrato et al., 1994. Pyramidal multiresolution source coding for progres-
sive sequences, IEEE Trans. Consumer Electronics 40 (4) 789-795.
8. S. Carrato, 1992. Neural networks for image compression, Neural Networks: Adv. and
Appl. 2 ed., Gelenbe Pub, North-Holland, Amsterdam, pp. 177-198.
9. O.T.C. Chen et al., 1994. Image compression using self-organisation networks, IEEE
Trans. Circuits Systems For Video Technol. 4 (5) (1994) 480-489.
10. M.F. Barnsley, L.P. 1993. Hurd, Fractal Image Compression, AK Peters Ltd.
11. Y. Oussar, 1998. Réseaux d’ondelettes et réseaux de neurones pour la modélisation stati-
que et dynamique de processus, Thèse de doctorat, Université Pierre et Marie Curie.
12. C. Foucher and G. Vaucher, 2001. Compression d’images et réseaux de neurones, revue
Valgo n°01-02, Ardèche.
13. Q. Zhang, 1997. Using Wavelet Network in Nonparametric Estimation, IEEE Trans. Neural
Network, Vol. 8, pp.227-236.
14. C. Aouiti, M.A Alimi, and A. Maalej, 2002. Genetic Designed Beta Basis Function Neural
Networks for Multivariable Functions Approximation, Systems Analysis, Modeling, and
Simulation, Special Issue on Advances in Control and Computer Engineering, vol. 42,
no. 7, pp. 975-1005.
15. C. Ben Amar, W. Bellil and A. Alimi. 2005-2006 Beta Function and its Derivatives: A
New Wavelet Family. Transactions on Systems, Signals & Devices Volume 1, Number 3.
16. D. L. Donoho and I. M. Johnstone, 1995. Adapting to unknown smoothness via wavelet
shrinkage, J. Amer. Statist. Assoc., vol. 90, no. 432, pp. 1200–1224, Dec.
37