Figure 8: Error due to the order of the filter derived from
different types of wavelets (scale 2 and p=q=30).
7 CONCLUSIONS
This article has proposed a method to detect the
point of change of statistical parameters in signals
issued from industrial machines. This method uses a
band-pass filters bank, derived from a wavelet
transform, to decompose the signal and the DCS
algorithm to characterize and classify the
parameters
of a signal in order to detect any variation of the
statistical parameters due to any change in frequency
and energy. The main contribution of the work is to
find a filters bank that approximates a wavelet. The
filters bank derivation is done by using the Prony's
method. After the calculation of the resulting error,
between the derived filters bank and the
correspondent wavelet, the wavelet 'db3' has been
selected. In order to reduce the error due to the order
of the derived filter, the order is taken to be beyond
30. This on-line algorithm is developed and tested
and it gives good results for the detection of changes
in the signals. It is necessary to test the algorithm
with other types of wavelets, to explain the error
depending on the scale levels, and to implement the
whole algorithm in a DSP. The detectability of DCS
must be proved after decomposing the signal,
especially after using the ARMA decomposition.
Another perspective is to complete the filters design
by determining the optimum orders p and q.
REFERENCES
Sottile J, Kohler J. An on-line method to detect incipient
failure of turn insulation in random wound motors.
IEEE Trans Energy Conver 1993;8(4):762–8.
Schoen RR, Habetler TG, Kamran F, Bartheld RG. Motor
bearing damage detection using stator current
monitoring. IEEE Trans Ind Appl 1995;31(6):1274–9.
Kliman GB, Premerlani WJ, Koegl RA, Hoeweler D. A
new approach to on-line turn fault detection in AC
motors. In: Proceedings of IEEE-IAS Annual Meeting,
1996:687–93.
Awadallah M.A,Morcos M.M., Application of AI tools in
faults diagnosis of electrical machines and drives – an
verview, Trans. IEEE Energy Conversion, vol. 18, no.
2, pp. 245-251, june 2003.
Benbouzid M., Vieira M., Theys C., "Induction motor's
faults detection and localization using stator current
advanced signal processing techniques" IEEE
Transaction on Power Electronics, Vol. 14, N° 1, pp
14 – 22, January1999.
Truchetet T. Ondelettes pour le signal numérique,
collection traitement du signal, HERMES, Paris, 1998.
Flandrin P. Temps fréquence, HERMES, Paris, 1993.
Krim H., Pesquet J.C. Multiresolution analysis of a class
of non stationnary processes. IEEE transaction on
information theory, 1995, vol. 41, No 4,pp 1011-1020.
Mallat S., Une exploration des signaux en ondelettes, les
éditions de l'école polytechnique, Paris, juillet 2000.
Nikiforov I. Sequential detection of changes in stochastic
systems. Lecture notes in Control and information
Sciences, NY, USA, 1986, pp. 216-228.
Basseville M., Nikiforov I. Detection of Abrupt Changes:
Theory and Application. Prentice-Hall, Englewood
Cliffs, NJ, 1993.
Khalil M. Une approche pour la détection fondée sur une
somme cumulée dynamique associée à une
décomposition multiéchelle. Application à l'EMG
utérin. 17ème Colloque GRETSI sur le traitement du
signal et des images, Vannes, France,1999.
Li C., Zheng C., Tai C. Detection of ECG characteristic
points using wavelet transform. IEEE transaction,
BME, 1995, vol.42, No 1, pp 21- 29.
Shenhadji L., Bellanger J.J., Carraut G. Détection temps
échelle d’événements paroxystiques intercriptiques en
électroencéphalogramme, traitement du signal, 1995,
vol.12, No 4, pp 357-371.
Misiti M., Misiti Y., Oppenheim G., Poggi J.M.. Wavelet
Toolbox for use with MATLAB® Computation
Visualization Programming. The MathWorks User’s
guide version 4.
Mustapha O., Khalil M., Hoblos G., Chafouk H., Ziadeh
H., Lefebvre D., On-Line Fault Detection by Using
Filters Bank and Artificial Neural Networks IEEE –
ICCTA, Damascus, Syria, April 2006.
Mustapha O, Khalil M., Hoblos G, Chafouk H., Ziadeh H.,
Lefebvre D., On-Line Change Detection by Using
Filters Bank/Wavelet Transform and Dynamic
Cumulative Sum Method, 4th FAI International
Conference, Lefke, Cyprus, December 2006.
FAULT DETECTION ALGORITHM USING DCS METHOD COMBINED WITH FILTERS BANK DERIVED FROM
THE WAVELET TRANSFORM
231