for processing times were selected so as to include
the cases when the length of the optimal schedule at
stage 1,
*
1
C , is close to the sum of job processing
times at stage 2,
∑
=
n
j
j
s
1
.
As an effectiveness measure we use the relative
percentage deviation of a heuristic solution from the
lower bound on the optimal makespan defined as
%100
max
×
−
=
LB
LBC
δ
where
},max{
21
LBLBLB = , where
1
LB =
*
1
C +
)(min
,,1 jnj
s
…=
and
2
LB = )(min
,,1,,,1 ijnjmi
p
…… ==
+
∑
=
n
j
j
s
1
,
*
1
C is the minimal makespan at stage 1.
Table 2: Computational results.
(%)
n m
A1 A2 A3 A4 A5 A6
50 2 1.38 1.40 0.06 0.75 0.06 0.04
2.78 3.35 1.30 0.54 0.12 0.06
4.15 4.43 2.74 0.27 0.20 0.14
4 3.26 1.94 0.31 0.46 0.15 0.40
7.21 4.60 3.77 0.60 0.52 0.60
7.68 6.25 5.81 0.82 0.89 0.74
6 2.65 1.39 0.25 0.52 0.16 0.52
8.24 5.16 4.64 0.87 0.77 0.84
8.90 7.80 6.87 1.55 1.68 1.51
100 2 0.74 0.51 0.03 0.39 0.02 0.01
1.80 2.49 0.60 0.21 0.04 0.02
1.52 1.33 1.00 0.03 0.05 0.02
4 1.26 1.08 0.08 0.26 0.08 0.25
5.06 3.18 1.87 0.18 0.22 0.18
3.45 2.70 2.50 0.17 0.21 0.16
6 2.03 1.01 0.06 0.23 0.07 0.25
5.64 4.03 2.46 0.40 0.31 0.42
4.02 4.03 3.76 0.47 0.47 0.43
150 2 0.21 0.42 0.02 0.19 0.02 0.00
1.62 1.16 0.28 0.19 0.02 0.01
0.95 0.90 0.91 0.02 0.02 0.02
4 0.71 0.61 0.00 0.22 0.01 0.16
4.24 2.05 1.44 0.15 0.10 0.19
1.94 1.60 1.37 0.06 0.07 0.06
6 0.76 0.49 0.04 0.20 0.01 0.20
4.14 2.36 1.86 0.24 0.17 0.24
2.66 2.46 2.17 0.18 0.20 0.19
200 2 0.46 0.42 0.01 0.21 0.02 0.00
1.10 0.99 0.17 0.30 0.01 0.01
0.69 0.48 0.38 0.01 0.01 0.01
4 0.60 0.44 0.04 0.19 0.03 0.10
2.15 1.70 0.86 0.12 0.05 0.12
1.47 1.22 1.16 0.05 0.05 0.05
6 0.83 0.25 0.02 0.10 0.03 0.10
2.46 1.57 0.90 0.12 0.07 0.12
1.75 1.67 1.64 0.10 0.10 0.10
The results of a computational experiment are
presented in Table 2 All entries in this table are
average values over 20 instances.
From Table 2, we can observe that deviations,
, significantly decrease, as the number of jobs
grows, and they increase with the number of
machines. We can see that algorithms A3, A4, A5,
and A6 always outperform A1 and A2, and A4, A5,
and A6 produce near-optimal solutions. On the
average over the entire collection of instances,
relative deviations of the heuristic makespan from its
lower bound are equal to 2.79%, 2.15%, 1.43%,
0.32%, 0.19%, and 0.23% for A1, A2, A3, A4, A5,
and A6, respectively.
The CPU times are small for all the heuristic
algorithms and equal to about 0.3, 1.5, 3, 4.5, and
6.5 seconds for n =50, 100, 150, and 200,
respectively.
REFERENCES
Brah, S.A. and L.L. Loo (1999). Heuristics for scheduling
in a flow shop with multiple processors. Europ. J. of
Opernl Res.113,113-112
Chen, B. (1995). Analysis of classes of heuristics for
scheduling a two-stage flow shop with parallel
machines at one stage, J. of Opernl Res. Soc. 46, 234-
244.
Gupta J.N.D. (1988). Two stage hybrid flowshop
scheduling problem. J. of Opernl Res. Soc. 39, 359-
364.
Haouari, M. and R. M’Hallah (1997). Heuristic algorithms
for the two-stage hybrid flowshop problem, Oper. Res.
Let. 21, 43-53.
Hoogeveen J.A., J.K. Lenstra and B. Veltman (1996).
Preemptive scheduling in a two-stage multiprocessor
flow shop is NP-hard. Europ. J. of Opernl Res. 89,
172-175.
Linn, R, W. Zhang (1999). Hybrid flow shop scheduling: a
survey. Comp. and Ind. Engin. 37, 57-61.
Ruiz, R., C. Maroto (2006). A genetic algorithm for hybrid
flowshops with sequence dependent setup times and
machine eligibility. Europ. J. of Opernl Res. 169, 781-
800.
Slowinski, R. (1980), Two approaches to problems of
resource allocation among project acticities – A
comparative study. J. Opl Res. Soc. 31, 711-723.
Slowinski, R. (1981), L'ordonanacement des taches
preemptives sur les processeurs independants en
presence de ressources supplementaires. RAIRO
Inform./Comp. Science, vol.15, No.2, 155-166.
HEURISTIC ALGORITHMS FOR SCHEDULING IN A MULTIPROCESSOR TWO-STAGE FLOWSHOP WITH 0-1
RESOURCE REQUIREMENTS
455