
Kato, T., Takanishi, A., Jishikawa, H., and Kato, I. (1983).
The realization of the quasi-dynamic walking by the
biped walking machine. In Morecki, A., Bianchi, G.,
and Kedzior, K., editors, Fourth Symposium on Theory
and Practice of Walking Robots, pages 341–351. Polish
Scientific Publishers.
Kelbley, R. J. (2006). Guidance and control of an unmanned
surface vehicle. Master’s thesis, Computer Engineering,
University of California, Santa Cruz.
Kelly, R. (1993). Comments on adaptive pd controller
for robot manipulators. IEEE Trans. Robot. Automat.,
9:117–119.
Kelly, R. (1997). Pd control with desired gravity compen-
sation of robotic manipulators: A review. Int. J. Robot.
Res., 16(5):660–672.
Khalil, W. and Dombre, E. (2004). Modeling, Identification
and Control of Robots. Kogan Page Science.
Kim, D., Kim, N.-H., Seo, S.-J., and Park, G.-T. (2004).
Fuzzy Modeling of Zero Moment Point Trajectory for a
Biped Walking Robot. Lecture Notes in Computer Sci-
ence. Springer-Verlag GmbH, 3214 edition.
Kim, J. O., Lee, B. R., Chung, C. H., Hwang, J., and Lee,
W. (2003). The Inductive Inverse Kinematics Algorithm
to Manipulate the Posture of an Articulated Body. Lec-
ture Notes in Computer Science. Springer-Verlag GmbH,
2657 edition.
Laib, A. (2000). Adaptive output regulation of robot manip-
ulators under actuator constraints. IEEE Trans. Robot.
Automat., 16:29–35.
Larimore, W. E. (1990). Canonical variate analysis in iden-
tification, filtering and adaptive control. In IEEE Confer-
ence on Decision and Control, pages 596–604.
Lim, H. and Takanishi, A. (2005). Compensatory motion
control for a biped walking robot. Robotica, 23(01):1–
11.
Lin, W., Qin, S. J., and Ljung, L. (2004). A frame-
work for closed-loop subspace identification with inno-
vation estimation. Technical Report 2004-07, Depart-
ment of Chemical Engineering, The University of Texas
at Austin, Austin, TX 78712, USA and Link
¨
oping Uni-
versity, SE-581 83 Link
¨
oping, Sweden.
Ljung, L. (1999). System identification: theory for the user.
Prentice-Hall, Upper Saddle River, NJ, USA.
Lohar, F. A. (2000). H
∞
and µ-synthesis for full control of
helicopter in hover. In 38th Aerospace Sciences Meeting
and Exhibit, Reno, NV. American Institute of Aeronau-
tics and Astronautics.
Lope, J. d., Zarraonandia, T., Gonz
´
alez-Careaga, R., and
Maravall, D. (2003). Solving the inverse kinematics in
humanoid robots: A neural approach. Lecture Notes in
Computer Science, 2687 / 2003:177–184.
McGeer, T. (1990). Passive dynamic walking. The Inter-
natinal Journal of Robotics Research, 9(2):62–82.
McMahon, T. (1984). Mechanics of locomotion. The Inter-
national Journal of Robotics Research, 3(2):4–28.
Morari, M. and Lee, J. H. (1999). Model predictive con-
trol: Past, present and future. Computers and Chemical
Engineering, 23:667–682.
Norton, J. P. (1986). Introduction to Identification. Aca-
demic Press.
Ogihara, N. and Yamazaki, N. (2001). Generation of human
bipedal locomotion by a bio-mimetic neuro-musculo-
skeletal model. Biological Cybernetics, 84:1.
Overschee, P. V. and Moor, B. D. (1994). N4SID:
Subspace algorithms for the identification of combined
deterministic-stochastic systems. Automatica, 30(1):75–
93.
Overschee, P. V. and Moor, B. D. (1996). Subspace Identi-
ficiation for Linear Systems. Kluwer Academic Publish-
ers.
Paul B. Brugarolas, M. G. S. (2004). Learning about dy-
namical systems via unfalsification of hypotheses. In-
ternational Journal of Robust and Nonlinear Control,
14(11):933–943.
Pratt, J. and Pratt, G. (1998). Intuitive control of a pla-
nar bipedal walking robot. In Proceedings of the IEEE
International Conference on Robotics and Automation
(ICRA).
Pratt, J. and Pratt, G. (1999). Exploiting natural dynamics
in the control of a 3D bipedal walking simulation. In
Proceedings of the International Conference on Climb-
ing and Walking Robots (CLAWAR).
Pratt, J. E. (2000). Exploiting Inherent Robustness and Nat-
ural Dynamics in the Control of Bipedal Walking Robots.
PhD thesis, Department of Electrical Engineering and
Computer Science, Massachusetts Institute of Technol-
ogy.
Raibert, M. (1986). Legged Robots That Balance. The MIT
Press.
Sakagami, Y., Watanabe, R., Aoyama, C., Matsunaga, S.,
Higaki, N., and Fujimura, K. (2002). The intelligent
ASIMO: system overview and integration. In IEEE/RSJ
International Conference on Intelligent Robots and Sys-
tem, volume 3, pages 2478–2483.
Sapio, V. D. and Khatib, O. (2005). Operational space con-
trol of multibody systems with explicit holonomic con-
straints. In Proceedings of the 2005 IEEE International
Conference on Robotics and Automation.
Schwind, W. J. (1998). Spring Loaded Inverted Pendu-
lum Running: A Plant Model. PhD thesis, University
of Michigan.
Sciavicco, L. and Siciliano, B. (2000). Modelling and Con-
trol of Robot Manipulators. Springer, 2nd edition.
Staib, W. E. and Staib, R. R. (1992). A neural network
electrode positioning optimization system for the electric
arc furnace. In International Joint Conference on Neural
Networks, volume 111, pages 1–9.
Taga, G. (1995). A model of the neuro-musculo-skeletal
system for human locomotion. I. Emergence of basic
gait. Biological Cybernetics, 73(2):97–111.
Takegaki, M. and Arimoto, S. (1981). A new feedback
method for dynamic control of manipulators. ASME J.
Dyn. Syst., Meas., Control, 102:119–125.
Tischler, M. B., Driscoll, J. T., Cauffman, M. G., and Freed-
man, C. J. (1994). Study of bearingless main rotor dy-
namics from frequency-response wind tunnel test data.
ICINCO 2007 - International Conference on Informatics in Control, Automation and Robotics
138