REFERENCES
Baumberg, A. (2000). Reliable feature matching across
widely separated views. In Proc. Conf. Computer Vi-
sion and Pattern Recognition, pages 774–781.
Delponte, E., Isgro, F., Odone, F., and Verri, A. (2006).
Svd-matching using sift features. Graphical Models,
68:415–431.
Faugeras, O. D. and Berthod, M. (1981). Improving consis-
tency and reducing ambiguity in stochastic labeling:
An optimization approach. IEEE PAMI, 3(4):412–
424.
Hummel, R. A. and Zucker, S. W. (1983). On the funda-
tions of relaxation labeling processes. IEEE PAMI,
5(3):267–287.
Lowe, D. G. (1999). Object recognition from local scale-
invariant features. In International Conference on
Computer Vision, pages 1150–1157. Corfu, Greece.
Matas, J., Chum, O., Urban, M., and Pajdla, T. (2002). Ro-
bust wide baseline stereo from maximally stable ex-
tremal regions. In Proc. 13th British Machine Vision
Conference, pages 384–393.
Mikolajczyk, K. and Schmid, C. (2002). An affine invariant
interest point detector. In European Conference on
Computer Vision (ECCV’2002). Copenhag, Denmark.
Mikolajczyk, K. and Schmid, C. (2004). Sacle & affine
invariant interest point detectors. Internationl Journal
of Computer Vision, 60(1):63–86.
Mikolajczyk, K. and Schmid, C. (2005). A performance
evaluation of local descriptors. IEEE Trans on PAMI,
27(10):1615–1630.
Mikolajczyk, K., Tuytelaars, T., Schmid, C., Zisserman, A.,
Matas, J., Schaffalitzky, F., Kadir, T., and Gool, L. V.
(2005). A comparison of affine region detectors. Inter-
nationl Journal of Computer Vision, 65(1/2):43–72.
Montesinos, P., Gouet, V., Deriche, R., and Pele, D. (2000).
Matching color uncalibrated images using differential
invariants. Image and Vision Computing, 18:659–671.
Pelillo, M. and Refice, M. (1994). Learning compatibility
coefficients for relaxation labeling processes. IEEE
PAMI, 16:933–945.
Price, K. E. (1985). Relaxation matching techniques - a
comparison. IEEE PAMI, 7(5):617–623.
Rosenfeld, A., Hummel, R., and Zucker, S. (1976). Scene
labeling by relaxation operations. IEEE Trans. Sys-
tems. Man Cybernetics, 6:420–433.
Schaffalitzky, F. and Zisserman, A. (2002). Multi-view
matching for unordered image sets. In Proc. 7th Euro-
pean Conference on Computer Vision, pages 414–431.
Schmid, C. and Mohr, R. (1997). Local grayvalue invariants
for image retrieval. PAMI, 19(5):530–534.
Tuytelaars, T. and Van Gool, L. (2004). Matching widely
separated views based on affine invariant regions. In-
ternational Journal of Computer Vision, 59(1):61–85.
Zhang, Z., Deriche, R., Faugeras, O., and Luong, Q.-T.
(1995). A robust technique for matching two uncal-
ibrated images through the recovery of the unknown
epipolar geometry. AI Journal, 78:87–119.
APPENDIX
Re-writing the Criterion with Matrices
The criterion to be minimized can be written:
C(x) = αC
1
(x) + (1−α)C
2
(x)
=
α
2n
n
∑
i=1
kp
i
− q
i
k
2
+
(1− α)m
m− 1
"
1−
1
n
n
∑
i=1
kp
i
k
2
#
= c
1
n
∑
i=1
kp
i
− q
i
k
2
− c
2
n
∑
i=1
kp
i
k
2
+ c
3
with c
1
=
α
2n
, c
2
=
(1−α)m
(m−1)n
and c
3
= nc
2
.
One wants to put C on the form:
C([x
1
,..., x
n
]
T
) =
1
2
n
∑
t=1
n
∑
p=1
x
T
t
H
tp
x
p
+ cte
Let remark that the constant is equal to c
3
. So one has:
C(x) =
n
∑
i=1
(c
1
kx
i
− q
i
k
2
− c
2
kx
i
k
2
) + c
3
=
n
∑
i=1
(c
1
(x
i
− q
i
)
T
(x
i
− q
i
) − c
2
x
T
i
x
i
) + c
3
= (c
1
− c
2
)
n
∑
i=1
x
T
i
x
i
|
{z }
A
−2c
1
n
∑
i=1
x
T
i
q
i
|
{z }
B
+c
1
n
∑
i=1
q
T
i
q
i
|
{z }
C
+c
3
The criterion is the weighetd sum of three terms which one
notes respectively A, B and C. Let define the following two
symbols:
δ
tp
=
1 if t = p
0 otherwise
Λ
tp
=
1 if a
p
∈ V
t
0 otherwise
Then, it is easy to show that:
A =
n
∑
t=1
n
∑
p=1
x
T
t
A
tp
x
p
where ∀ t, p ∈ {1. ..n}, A
tp
= δ
tp
I
m
B =
n
∑
t=1
n
∑
p=1
x
T
t
B
tp
x
p
where ∀ t, p ∈ {1,.. . ,n}, B
tp
=
Λ
tp
|V
t
|
w
tp
P
tp
and P
tp
is the
matrix of size m× m containning the conditional probabili-
ties p
tp
(k,l), and |V
t
| = #{V
t
}.
C =
n
∑
t=1
n
∑
p=1
x
T
t
C
tp
x
p
where ∀ t, p ∈ {1,. .. ,n}, C
tp
=
∑
n
i=1
(B
T
it
B
ip
)
Finally,
C([x
1
,. .., x
n
]
T
) =
1
2
n
∑
t=1
n
∑
p=1
x
T
t
H
tp
x
p
+ c
3
with
∀ t, p∈ {1,... ,n}, H
tp
= 2(c
1
−c
2
)A
tp
−4c
1
B
tp
+2c
1
C
tp