REFERENCES
Andreon, S. (1999). Neural nets and star/galaxy separation
in wide field astronomical images. In Proceedings of
International Joint Conference on Neural Networks.
Andreon, S., Gargiulo, G., Longo, G., Tagliaferri, R., and
Campuano, N. (2000). Wide field imaging - i. ap-
plications of neural networks to object detection and
star/galaxy classification. Monthly Notices of the
Royal Astronomical Society, 319:700–716.
Bailer-Jones, C., C.A.L., Irwin, M., and von Hippel, T.
(1998). Automated classification of stellar spectra. ii:
Two-dimensional classification with neural networks
and principal components analysis. Monthly Notices
of the Royal Astronomical Society, 298:361.
Bazell, D. and Aha, D. (2001). Ensembles of classifiers for
morphological galaxy classification. The Astrophysi-
cal Journal, 548:219–233.
Chawla, N., Bowyer, K., Hall, L., and Kegelmeyer, P.
(2002). Smote: Synthetic minority over-sampling
technique. Journal of Artificial Intelligence Research,
16:321–357.
DelaCalleja, J. and Fuentes, O. (2004). Machine learning
and image analysis for morphological galaxy classi-
fication. Monthly Notices of the Royal Astronomical
Society, 349:87–93.
Domingos, P. (1999). Metacost: A general method for mak-
ing classifiers cost-sensitive. In Proceedings of the
5th International Conference on Knowledge Discov-
ery and Data Mining, pages 155–164.
Hearn and Baker (1997). Computer Graphics. Prentice
Hall, 2nd. edition.
Japkowicz, N. (2000). The class imbalance problem: Sig-
nificance and strategies. In Proceedings of the 2000
International Conference on Artificial Intelligence
(IC-AI’2000): Special Track on Inductive Learning,
pages 111–117.
Kubat, M. and Matwin, S. (1997). Addressing the curse of
imbalanced training sets: One sided selection. In Pro-
ceedings of the Fourteenth International Conference
on Machine Learning, pages 179–186.
Lahav, O. (1996). Artificial neural networks as a tool for
galaxy classification. In Proceedings in Data Analysis
in Astronomy.
M¨ahonen, P. and Hakala, P. (1995). Automated source clas-
sification using a kohonen network. The Astrophysical
Journal, 452:L77–L80.
Naim, A., Lahav, O., Sodr
´
e, L., Jr, and Storrie-Lombardi,
M. (1995). Automated morphological classification of
apm galaxies by supervised artificial neural networks.
Monthly Notices of the Royal Astronomical Society,
275:567.
Nuzillard, D. and Bijaoui, A. (2000). Blind source sepa-
ration and analysis of multispectral astronomical im-
ages. Astronomy and Astrophysics, 147:129.
Owens, E., Griffiths, R., and Ratnatunga, K. (1996). Us-
ing oblique decision trees for the morphological clas-
sification of galaxies. Monthly Notices of the Royal
Astronomical Society, 281:153.
Pazzani, M., Merz, C., Murphy, P., Ali, K., Hume, T., and
Brunk, C. (1994). Reducing misclassification costs. In
Proceedings of the Eleventh International Conference
on Machine Learning, pages 217–225.
Philip, N., Wadadekar, Y., Kembhavi, A., and Joseph, K.
(2002). A difference boosting neural network for au-
tomated star-galaxy classification. Astronomy and As-
trophysics, 385:1119–1126.
Storrie-Lombardi, M., Lahav, O., Sodr
´
e, L., Jr, and Storrie-
Lombardie, L. (1992). Morphological classification
of galaxies by artificial neural networks. Monthly No-
tices of the Royal Astronomical Society, 259:8.
Turk, M. and Pentland, A. (1991). Eigenfaces for recogni-
tion. Journal of Cognitive Neuroscience, 3(1):71–86.
Weaver, B. (2000). Spectral classification of unresolved bi-
nary stars with artificial neural networks. The Astro-
physical Journal, 541:298–305.
Zhang, Y. and Zhao, Y. (2004). Automated clustering algo-
rithms for classification of astronomical objects. The
Astrophysical Journal, 422:1113–1121.