BRANCHES FILTERING APPROACH FOR MAX-TREE

Ketut E. Purnama, Michael H. F. Wilkinson, Albert G. Veldhuizen, Peter M. A. van Ooijen, Jaap Lubbers, Tri A. Sardjono, Gijbertus J. Verkerke

2007

Abstract

A new filtering approach called branches filtering is presented. The filtering approach is applied to the Max-Tree representation of an image. Instead of applying filtering criteria to all nodes of the tree, this approach only evaluate the leaf nodes. The expected objects can be found by collecting a number of parent nodes of the selected leaf nodes. The more parent nodes involve the wider the area of the expected objects. The maximum value of the number of parents (PLmax) can be determined by inspecting the output image before having unexpected image. Different images have found have different PLmax values. The branches filtering approach is suitable to extract objects in a noisy image as long as these objects can be recognised from its prominent information such as intensity, shape, or other scalar or vector values. Furthermore, the optimum result can be achieved if the areas which have the prominent information are present in the leaf nodes. The experiments to extract bacteria from noisy image, localizing bony parts in a speckled ultrasound image, and acquiring certain features from a natural image appeared to be feasible give the expected results. The application of the branches filtering approach to a 3D MRA image of human brain to extract the blood vessels gave also the expected image. The results show that the branches filtering can be used as an alternative filtering approach to the original filtering approach of Max-Tree.

References

  1. Breen, E. J., Jones, R., 1996. Attribute opening, thinnings and granulometries. In Computer Vision and Image Understanding , 64: 377-389.
  2. Ouzounis, G. K., Wilkinson, M. H. F., 2006. Filament enhancement by non-linear volumetric filtering using clustering-based connectivity. In Proc.Int.Workshop on Intelligent Computing in Pattern Analysis/Synthesis (IWICPAS), Lecture Notes in Computer Science , 4153: 317-327.
  3. Salembier, P., Oliveras, A., Garrido, L., 1998. Antiextensive connected operator for image and sequence processing. In IEEE Transaction on Image Processing , 7: 555-570.
  4. Salembier, P., Serra, J., 1995. Flat zones filtering, connected operators and filter by reconstruction. In IEEE Transaction on Image Processing , 3: 1153- 1160.
  5. Serra, J., Salembier, P., 1993. Connected operators and pyramids. In Image Algebra and Mathematical Morphology , 2030: 65-76.
  6. Urbach, E. R., Boersma, N. J., Wilkinson, M. H. F., 2005. Vector-Attribute Filters. In Mathematical Morphology: 40 years on, Proc.Int.Symp.Math.Morph.(ISMM) , 95-104.
  7. Urbach, E. R., Wilkinson, M. H. F., 2002. Shape-only granulometries and grey-scale shape filters. In Proc.Int.Symphosium on Mathematical Morphology VI, H.Talbot, R.Beare, Eds. 305-314.
  8. Vincent, L, 1993. Morphological grayscale reconstruction in image analysis: applications and efficient algorithms. In IEEE Transaction on Image Processing , 2: 176-201.
  9. Wilkinson, M. H. F., Westerberg, M. A., 2001. Shape Preserving Filament Enhancement Filtering. In Proc.MICCAI'2001, ser.Lecture in Computer Science, W.J.Niessen and M.A.Viergever, Eds. 2208: 770-777.
Download


Paper Citation


in Harvard Style

E. Purnama K., H. F. Wilkinson M., G. Veldhuizen A., M. A. van Ooijen P., Lubbers J., A. Sardjono T. and J. Verkerke G. (2007). BRANCHES FILTERING APPROACH FOR MAX-TREE . In Proceedings of the Second International Conference on Computer Vision Theory and Applications - Volume 1: VISAPP, ISBN 978-972-8865-73-3, pages 328-332. DOI: 10.5220/0002059203280332


in Bibtex Style

@conference{visapp07,
author={Ketut E. Purnama and Michael H. F. Wilkinson and Albert G. Veldhuizen and Peter M. A. van Ooijen and Jaap Lubbers and Tri A. Sardjono and Gijbertus J. Verkerke},
title={BRANCHES FILTERING APPROACH FOR MAX-TREE},
booktitle={Proceedings of the Second International Conference on Computer Vision Theory and Applications - Volume 1: VISAPP,},
year={2007},
pages={328-332},
publisher={SciTePress},
organization={INSTICC},
doi={10.5220/0002059203280332},
isbn={978-972-8865-73-3},
}


in EndNote Style

TY - CONF
JO - Proceedings of the Second International Conference on Computer Vision Theory and Applications - Volume 1: VISAPP,
TI - BRANCHES FILTERING APPROACH FOR MAX-TREE
SN - 978-972-8865-73-3
AU - E. Purnama K.
AU - H. F. Wilkinson M.
AU - G. Veldhuizen A.
AU - M. A. van Ooijen P.
AU - Lubbers J.
AU - A. Sardjono T.
AU - J. Verkerke G.
PY - 2007
SP - 328
EP - 332
DO - 10.5220/0002059203280332