5 CONCLUSIONS
An automatic approach for left ventricle anatomical
landmarks extraction has been implemented. The
classification approach does not require any prior
knowledge about the ventriculograms and not require
some preprocessing of the input data.
A quantitative validation stage is implemented.
The estimated landmarks from the detection approach
show a good match with the landmarks located by
specialist. This application would be a useful tool for
detecting the left ventricle landmark in conventional
Left Anterior Oblique (LAO) 60
◦
view.
Further research involves incorporationof the pro-
posed classifier to an approach for left ventricle con-
tour detection using deformable models.
ACKNOWLEDGEMENTS
The authors would like to thank the CDCHT from
Universidad de Los Andes–T´achira and Investigation
Dean’s Office of Universidad Nacional Experimental
del T´achira. Authors would also like to thank the Cen-
tro M´edico Caracas in Caracas, Venezuela for provi-
ding the human ventriculographic databases.
REFERENCES
Bosch, J., Mitchell, S., Lelieveldt, B., Nijland, F., Kamp,
O., Sonka, M., and Reiber, J. (2002). Automatic seg-
mentation of echocardiographic sequences by active
appearance motion models. IEEE Transactions on
Medical Imaging, 21(11):1374–1383.
Burges, C. (1998). A tutorial on support vector machines for
pattern recognition. Knowledge Discovery and Data
Mining, 2(2):121–167.
Chandrashekara, R., Mohiaddin, R., and Rueckert, D.
(2004). Analysis of 3–D myocardial motion in tagged
MR images using nonrigid image registration. IEEE
Transactions on Medical Imaging, 23(10):1245–1250.
Frangi, A., Rueckert, D., Schnabel, J., and Niessen, W.
(2002). Automatic construction of multiple-object
three-dimensional statistical shape models: Applica-
tion to cardiac modeling. IEEE Transactions on Med-
ical Imaging, 21(9):1151–1166.
Fu, K. S. and Mui, J. K. (1981). A survey on image seg-
mentation. Pattern Recognition, 13(1):3–16.
Gunn, S. (1997). Support vector machines for classification
and regression. Technical report, Information: Sig-
nals, Images, Systems (ISIS) Research Group, Uni-
versity of Southampton.
Kennedy, J., Trenholme, S., Kaiser, I., and Wash, S. (1970).
Left ventricular volume and mass from single–plane
cineangiocardiogram. A comparison of anteroposte-
rior and right anterior oblique methods. American
Heart Journal, 80(3):343–352.
Macovski, A. (1983). Medical Imaging Systems. Prentice-
Hall, New-Jersey.
Marcus, M. L. and Dellsperger, K. C. (1991). Determinants
of systolic and diastolic ventricular function. In Mar-
cus, M., Schelbert, H., Skorton, D., and Wolf, G., ed-
itors, Cardiac Imaging. A Companion to Braunwald’s
Heart Disease, pages 24–38. W.B. Saunders Com-
pany, Philadelphia, USA.
Medina, R., Garreau, M., Toro, J., Coatrieux, J. L., and
Jugo, D. (2004). Three–dimensional reconstruction
of left ventricle from two angiographic views: An ev-
idence combination approach. IEEE Transactions on
Systems, Man, and Cybernetics—Part A: Systems and
Humans, 34(3):359–370.
Oost, E., Koning, G., Sonka, M., Reiber, J., and Lelieveldt,
B. (2005). Automated segmentation of X–ray left ven-
tricular angiograms using multi–view active appear-
ance models and dynamic programming. In Proceed-
ings of the Functional Imaging and Modeling of the
Heart: Third International Workshop, pages 23–31,
Barcelona, Spain.
Osuna, E., Freund, R., and Girosi, F. (1997a). Support vec-
tor machines: Training and applications. Technical re-
port, Artificial Intelligence Laboratory, Massachusetts
Institute of Technology.
Osuna, E., Freund, R., and Girosi, F. (1997b). Training sup-
port vector machines: an application to face detection.
In Conference on Computer Vision and Pattern Recog-
nition (CVPR ’97), pages 130–136, San Juan, Puerto
Rico.
Ratib, O. (2000). Quantitative analysis of cardiac function.
In Bankman, I., editor, Handbook of Medical Imag-
ing: Processing and Analysis, pages 359–374. Acad-
emic Press, San Diego.
Sch¨olkopf, B., Burges, C., and Vapnik, V. (1995). Extract-
ing support data for a given task. In Proceedings First
International Conference on Knowledge Discovery &
Data Mining, pages 252–257, Menlo Park, CA.
Smola, A. J. (1998). Learning with Kernels. PhD thesis,
Technische Universitt Berlin, Germany.
Suzuki, K., Horiba, I., Sugie, N., and Nanki, M. (2004). Ex-
traction of left ventricular contours from left ventricu-
lograms by means of a neural edge detector. IEEE
Transactions on Medical Imaging, 23(3):330–339.
Vapnik, V. (1982). Estimation of Dependences Based on
Empirical Data. Springer–Verlag, New York.
Vapnik, V. (1995). The Nature of Statistical Learning The-
ory. Springer–Verlag, New York.
WHO (2002). Reducing risk and promoting healthy
life. The World Health Report 2002, Geneva, World
Health Organization.
Williamson, R., Smola, A., and Sch¨olkopf, B. (1999). En-
tropy numbers, operators, and support vector kernels.
In Sch¨olkopf, B., Burges, C., and Smola, A., editors,
Advances in Kernel Methods–Support Vector Learn-
ing, pages 127–144, Cambridge, MA: MIT Press.