THEORETICAL FOUNDATIONS OF 3D SCALAR FIELD VISUALIZATION

Mohammed Mostefa Mesmoudi, Leila De Floriani, Paolo Rosso

2007

Abstract

In this paper we introduce two novel technics that allow for a three dimensional scalar field to be visualized in the three dimensional space R3. Many applications are possible especially in medicine imagery. New multiresolution models can be build based our techniques. Moreover, we show that these two visualization techniques allow the extraction of morphological features of the space and that may not be captured by classical methods.

References

  1. Ankerst, M. (2000). Visual Data Mining. PhD thesis, Facultat fur Mathematik und Informatik der LidwigMaximilians-Universitat Munchen.
  2. Bajaj, C. L., Pascucci, V., and Shikore, D. R. (1998). Visualization of scalar topology for structural enhacement. In Proceedings of the IEEE Conference on Visualization 7898 1998, pages 51-58.
  3. Bajaj, C. L. and Shikore, D. R. (1998). Topology preserving data simplification with error bounds. Journal on Computers and Graphics, 22(1):3-12.
  4. Berger, M. and Gostiaux, B. (1972). Différentielle. Collection U.
  5. Edelsbrunner, H., Harer, J., and Zomorodian, A. (2001). Hierarchical morse complexes for piecewise linear 2- manifolds. In Proc 17th Sympos. Comput. Geom., pages 70-79.
  6. H. Edelsbrunner, J. Harer, V. N. V. P. (2003). Morse-smale complexes for piecewise linear 3-manifolds. In Proc. ACM Symposium on Computational Geometry, pages 361-370.
  7. J.Toriwaki and Fukumura, T. (1975). Extraction of structural information from grey pictures. Computer Graphics and Image Processing, 7:30-51.
  8. Mangan, A. and Whitaker, R. (1999). Partitioning 3d surface meshes using watershed. In IEEE Transactionon visualization and Computer Graphics, volume 5, pages 308-321.
  9. Massey, W. S. (1977). Algebraic Topology: an Introduction, volume 56. Springer-Verlag.
  10. Milnor, J. (1963). Morse Theory. Princeton University Press.
  11. Nackman, L. R. (1984). Two-dimensional critical point configuration graph. IEEE Transactions on Pattern Analysisand Machine Intelligence, PAMI-6(4):442- 450.
  12. Peucker, T. K. and Douglas, E. G. (1975). Detection of surface-specific points by local paprallel processing of discrete terrain elevation data. Graphics Image Processing, 4:475-387.
  13. Smale, S. (1960). Morse inequalities for a dynamical system. Bulletin of American Mathematical Society, 66:43-49.
  14. Spivak, M. (1979). A comprehensive introduction to differential Geometry, volume 1. Houston, Texas.
  15. Thom, R. (1949). Sur une partition en cellule associées a une fonction sur une variété. C.R.A.S., 228:973-975.
  16. Vincent, L. and Soille, P. Watershed in digital spaces: an efficient algorithm based on immersion simulation. In IEEE Transactionon on Pattern Analysis and Machine Intelligence, volume 13, pages 583-598.
  17. Watson, L. T., Laffey, T. J., and Haralick, R. (1985). Topographic classification of digital image intensity surfaces using generalised splines and the discrete cosine transformation. Computer Vision, Graphics and Image Processing, 29:143-167.
Download


Paper Citation


in Harvard Style

Mostefa Mesmoudi M., De Floriani L. and Rosso P. (2007). THEORETICAL FOUNDATIONS OF 3D SCALAR FIELD VISUALIZATION . In Proceedings of the Second International Conference on Computer Vision Theory and Applications - Volume 3: 3D Model Aquisition and Representation, (VISAPP 2007) ISBN 978-972-8865-75-7, pages 69-77. DOI: 10.5220/0002065300690077


in Bibtex Style

@conference{3d model aquisition and representation07,
author={Mohammed Mostefa Mesmoudi and Leila De Floriani and Paolo Rosso},
title={THEORETICAL FOUNDATIONS OF 3D SCALAR FIELD VISUALIZATION},
booktitle={Proceedings of the Second International Conference on Computer Vision Theory and Applications - Volume 3: 3D Model Aquisition and Representation, (VISAPP 2007)},
year={2007},
pages={69-77},
publisher={SciTePress},
organization={INSTICC},
doi={10.5220/0002065300690077},
isbn={978-972-8865-75-7},
}


in EndNote Style

TY - CONF
JO - Proceedings of the Second International Conference on Computer Vision Theory and Applications - Volume 3: 3D Model Aquisition and Representation, (VISAPP 2007)
TI - THEORETICAL FOUNDATIONS OF 3D SCALAR FIELD VISUALIZATION
SN - 978-972-8865-75-7
AU - Mostefa Mesmoudi M.
AU - De Floriani L.
AU - Rosso P.
PY - 2007
SP - 69
EP - 77
DO - 10.5220/0002065300690077