5 CONCLUSION
By deriving ten feature vectors or feature vectors
from wavelet transformation in three iterations
reduces overall time complexity than previous
methods. The new method proposed in our study for
clustering effectively minimizes the undesirable
results and gives a good matching pattern, that will
be having zero or a minimum set of nonrelevant
images.
REFERENCES
Sameer Antani, Rangachar Kasturi, and Ramesh Jain. A
Survey on the Use of Pattern Recognition Methods for
Abstraction, Indexing and Retrieval of Images and
Video. Pattern Recognition,35:945–965, 2002.
I. Daubechies, Ten Lectures on Wavelets, Capital City
Press, 1992.
Faloutsos, R. Barber, M. Flickner, J. Hafner, W. Niblack,
D. Petkovic, W. Equitz, ``Efficient and effective
querying by image content,'' Journal of Intelligent
Information Systems: Integrating Artificial
Intelligence and Database Technologies, vol. 3, no. 3-
4, pp. 231-62, July 1994.
Gupta, R. Jain, "Visual information retrieval,'' Comm.
Assoc. Comp. Mach., vol. 40, no. 5, pp. 70-79, May
1997
Guha S.,Rastogi R., and Shim K.ROCK: A robust
clustering algorithm for categorical attributes. In
proceedingConclusions of the IEEE International
Conference on data engineering,Sydney,March 1999.
W. Y. Ma, B. Manjunath, ''NaTra: A toolbox for
navigating large image databases'', Proc. IEEE Int.
Conf. Image Processing, pp. 568-71, 1997.
Y. Meyer, Wavelets AlgoConclusion rithms and
Applications, SIAM, Philadelphia, 1993.
S. Mukherjea, K. Hirata, Y. Hara, “AMORE: a World
Wide Web image retrieval engine,” World Wide Web,
vol. 2, no. 3, pp. 115-32, Baltzer, 1999.
A. Natsev, R. Rastogi, K. Shim, ``WALRUS: A similarity
retrieval algorithm for image databases,'' SIGMOD,
Philadelphia, PA, 1999.
ICASSPW. Niblack, R. Barber, W. Equitz, M. Flickner, E.
Glasman, D. Petkovic, P. Yanker, C. Faloutsos, G.
Taubin, ``The QBIC project: querying images by
content using color, texture, and Texture,'' Proc. SPIE
- Int. Soc. Opt. Eng., in Storage and Retrieval for
Image and Video Database, vol. 1908, pp. 173-87, San
Jose, February, 1993.
A. Pentland, R. W. Picard, S. Sclaroff, `Photobook: tools
for content-based manipulation of image databases,''
SPIE Storage and Retrieval Image and Video
Databases II, vol. 2185, pp. 34-47, San Jose, February
7-8, 1994.
R. W. Picard, T. Kabir, ``Finding similar patterns in large
image databases,'' IEEE, Minneapolis, vol. V, pp. 161-
64, 1993.
Y. Rubner, L. J. Guibas, C. Tomasi, ``The earth mover's
distance, Shimulti-dimensional scaling, and color-
based image retrieval,'' Proceedings of the ARPA
Image Understanding Workshop, pp. 661-668, New
Orleans, LA, May 1997.
Carson, M. Thomas, S. Belongie, J. M. Hellerstein, J.
Malik, ``Blob world: a system for region-based image
indexing and retrieval,'' Third Int. Conf. on Visual
Information Systems, D. P. Huijsmans, A. W.M.
Smeulders (eds.), Springer, Amsterdam, The
Netherlands, June 2-4, 1999.
J. R. Smith, S. -F. Chang, “An image and video search
engine for the World-Wide Web,'' Storage and
Retrieval for Image and Video Databases V (Sethi, I K
and Jain, R C, eds), Proc SPIE 3022, pp. 84-95, 1997.
J. R. Smith, C. S. Li, ''Image classification and querying
using composite region templates,'' Journal of
Computer Vision and Image Understanding, 2000, to
appear.
S. Stevens, M. Christel, H. Wactlar, “Informedia:
improving access to digital video,'' Interactions, vol. 1,
no. 4, pp. 67-71, 1994.
J. Z. Wang, G. Wiederhold, O.Firschein, X. W. Sha,
``Content-based image indexing and searching using
Daubechies' wavelets,'' International Journal of
Digital Libraries, vol. 1, no. 4, pp. 311-328, 1998.
M. L. Kherfi and D. Ziou, universit´e de sherbrooke, A.
Bernardi, Laboratoires Universitaires Bell,” Image
Retrieval from the World Wide Web: Issues,
Techniques, and Systems In ,ACM Computing
Surveys, Vol. 36, No. 1, March 2004, pp. 35–67.
TEXTURE BASED IMAGE INDEXING AND RETRIEVAL
181