An Unsupervised Approach for Adaptive Color Segmentation

Ulrich Kaufmann, Roland Reichle, Christof Hoppe, Philipp A. Baer

2007

Abstract

One of the key requirements of robotic vision systems for real-life application is the ability to deal with varying lighting conditions. Many systems rely on color-based object or feature detection using color segmentation. A static approach based on preinitialized calibration data is not likely to perform very well under natural light. In this paper we present an unsupervised approach for color segmentation which is able to self-adapt to varying lighting conditions during run-time. The approach comprises two steps: initialization and iterative tracking of color regions. Its applicability has been tested on vision systems of soccer robots participating in RoboCup tournaments.

References

  1. Federico Anzani, Daniele Bosisio, Matteo Matteucci, and Domenico G. Sorrenti. On-line color calibration in non-stationary environments. In RoboCup 2005 - Proceedings of the International Symposium, Lecture Notes in Artificial Intelligence, pages 396-407. Springer, 2006.
  2. Claudia G önner, Martin Rous, and Karl-Friedrich Kraiss. Real-time adaptive colour segmentation for the RoboCup middle size league. In RoboCup 2004 - Proceedings of the International Symposium, Lecture Notes in Artificial Intelligence, pages 402-409. Springer, 2005.
  3. P. Heinemann, F. Sehnke, and A. Zell. Towards a calibration-free robot: The act algorithm for automatic online color training. In RoboCup 2006 - Proceedings of the International Symposium, Lecture Notes in Artificial Intelligence. Springer, 2007. to appear.
  4. Matthias Jüngel. Using layered color precision for a self-calibrating vision system. In RoboCup 2004 - Proceedings of the International Symposium , Lecture Notes in Artificial Intelligence, pages 209-220. Springer, 2005.
  5. Matthias Jüngel, Jan Hoffmann, and Martin Lötzsch. A real-time auto-adjusting vision system for robotic soccer. In Daniel Polani, Brett Browning, and Andrea Bonarini, editors, RoboCup 2003 - Proceedings of the International Symposium , volume 3020 of Lecture Notes in Artificial Intelligence, pages 214-225, Padova, Italy, 2004. Springer.
  6. Gerd Mayer, Hans Utz, and Gerhard K. Kraetzschmar. Towards autonomous vision selfcalibration for soccer robots. Proceeding of the IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS-2002) , 1:214-219, September-October 2002.
  7. RoboCup Official Site. http://www.robocup.org/.
  8. M. Sridharan and P. Stone. Autonomous planned color learning on a legged robot. In RoboCup 2006 - Proceedings of the International Symposium , Lecture Notes in Artificial Intelligence. Springer, 2007. to appear.
  9. Mohan Sridharan and Peter Stone. Towards eliminating manual color calibration at RoboCup. In RoboCup 2005 - Proceedings of the International Symposium , Lecture Notes in Artificial Intelligence, pages 673-681. Springer, 2006.
Download


Paper Citation


in Harvard Style

Kaufmann U., Reichle R., Hoppe C. and A. Baer P. (2007). An Unsupervised Approach for Adaptive Color Segmentation . In Robot Vision - Volume 1: Robot Vision, (VISAPP 2007) ISBN 978-972-8865-76-4, pages 3-12. DOI: 10.5220/0002066200030012


in Bibtex Style

@conference{robot vision07,
author={Ulrich Kaufmann and Roland Reichle and Christof Hoppe and Philipp A. Baer},
title={An Unsupervised Approach for Adaptive Color Segmentation},
booktitle={Robot Vision - Volume 1: Robot Vision, (VISAPP 2007)},
year={2007},
pages={3-12},
publisher={SciTePress},
organization={INSTICC},
doi={10.5220/0002066200030012},
isbn={978-972-8865-76-4},
}


in EndNote Style

TY - CONF
JO - Robot Vision - Volume 1: Robot Vision, (VISAPP 2007)
TI - An Unsupervised Approach for Adaptive Color Segmentation
SN - 978-972-8865-76-4
AU - Kaufmann U.
AU - Reichle R.
AU - Hoppe C.
AU - A. Baer P.
PY - 2007
SP - 3
EP - 12
DO - 10.5220/0002066200030012