function and adaptive nature of the proposed
algorithm, make it appropriate to implement related
neural networks for different real time application.
ACKNOWLEDGEMENTS
This project was partially supported by Iranian
telecommunication research center (ITRC).
REFERENCES
S. Theodoridis, 2003, Pattern Recognition, Academic
Press, New York, 2
nd
Edition.
C. Chang, H. Ren, 2000, An Experimented-based
quantitative and comparative analysis of target
detection and image classification algorithms for
hyper-spectral imagery, IEEE Trans. Geosci. Remote
Sensing, Vol.38, No. 2, pp. 1044-1063.
L. Chen, H. Mark Liao, J. Lin, M. Ko, G. Yu, 2000, A
new LDA based face recognition system which can
solve the small sample size problem, Pattern
Recognition., No. 33, pp. 1713-1726.
J, Lu, K. N. Plataniotis, A. N. Venetsanopoulos, 2003,
Face recognition using LDA-based algorithms, IEEE
Trans. Neural Networks, Vol. 14, No.1, pp. 195-200.
C. Chatterjee, V.P. Roychowdhury, 1997, On self-
organizing algorithm and networks for class-
separability features, IEEE Trans. Neural Network,
Vol. 8, No.3, pp 663-678.
H. Abrishami Moghaddam, Kh. Amiri Zadeh, 2003, Fast
adaptive algorithms and networks for class-
separability features, Pattern Recognition, Vol. 36,
No. 8, pp. 1695-1702.
H.Abrishami Moghaddam, M.Matinfar, S.M. Sajad
Sadough, Kh. Amiri Zadeh, 2005, Algorithms and
networks for accelerated convergence of adaptive
LDA, Pattern Recognition, Vol. 38, No. 4, pp. 473-
483.
K. Fukunaga, 1990, Introduction to Statistical Pattern
Recognition, Academic Press, New York, 2
nd
Edition.
J.R. Magnus, H. Neudecker, 1999, Matrix Differential
Calculus, John Wiley.
B.Widrow, S. Stearns, 1985, Adaptive Signal Processing,
Prentice-Hall.
M. Hagan, H. Demuth, 2002, Neural Network Design,
PWS Publishing Company.
H. J. Kushner, D. S. Clarck, 1978, Stochastic
approximatiom methods for constrained and
unconstrained systems, Speringer Verlog.
A. Benveniste, M. Metivier, P. Priouret, 1990, Adaptive
algorithms and stochastic approximations, Academic
Press, New York, 2
nd
Edition.
L. Ljung, 1977, Analysis of recursive stochastic
algorithms , IEEE Trans. Automat Control, Vol. 22,
pp. 551-575, Aug. 1977.
S. Ozawa, S. L. Toh, S. Abe, S. Pang, N. Kasabov, 2005,
Incremental learning of feature space and classifier for
face recognition, Neural Networks, Vol. 18, pp. 575-
584.
S. Pang, S. Ozawa, N. Kasabov, 2005, Incremental linear
discriminant analysis for classification of data
streams”, IEEE Trans. on Systems, Man and
Cybernetics, Vol. 35, No. 5, pp. 905-914.
T. Okada, S.Tomita, 1985, An Optimal orthonormal
system for discriminant analysis, Pattern Recognition,
Vol. 18, No.2, pp. 139-144.
NEW ADAPTIVE ALGORITHMS FOR EXTRACTING OPTIMAL FEATURES FROM GAUSSIAN DATA
187