References
1. DeSouza, G. N. , Kak, A. C.: Vision for Mobile Robot Navigation: A Survey. IEEE Transac-
tions on Pattern Analysis and Machine Intelligence, vol. 24, no. 2, pp. 237-267 (2002).
2. Kastrinaki, V., Zervakis, M., Kalaitzakis, K.: A survey of video processing techniques for
traffic applications. Image and Vision Computing, vol. 21, pp. 359–381 (2003).
3. Scharstein, D., Szeliski, R.: A Taxonomy and Evaluation of Dense Two-Frame Stereo Cor-
respondence Algorithms. International Journal of Computer Vision, vol. 47, no. 1, pp. 7-42
(2002).
4. Zhang, C.: A Survey on Stereo Vision for Mobile Robots. Technical report, Dept. of Electri-
cal and Computer Engineering, Carnegie Mellon University, Pittsburgh, PA, 15213, USA
(2002).
5. Kanade, T., Okutomi, M.: A stereo matching algorithm with an adaptive window: Theory
and experiment. IEEE Transaction on Pattern Analysis and Machine Intelligence, vol. 16,
no. 9, pp. 920-932 (1994).
6. Fusiello, A., Roberto, V.: Efficient stereo with multiple windowing. Proceedings of IEEE
Conference on Computer Vision and Pattern Recognition, pp 858–863, Puerto Rico (1997).
7. Veksler, O.: Stereo matching by compact windows via minimum ratio cycle. Proceedings of
the International Conference on Computer Vision, vol. I, pp. 540–547, Vancouver, Canada
(2001).
8. Marr, D., Poggio, T.A.: Cooperative computation of stereo disparity. Science, vol. 194, no.
4262, pp. 283–287 (1976).
9. Zitnick, C.L., Kanade, T.: A cooperative algorithm for stereo matching and occlusion detec-
tion. IEEE Transaction on Pattern Analysis and Machine Intelligence, vol. 22, no. 7, pp.
675–684 (2000).
10. Geiger, D., Ladendorf, B., Yuille, A.: Occlusions and binocular stereo. International Jour-
nal of Computer Vision, vol. 14, pp. 211–226 (1995).
11. Roy, S.: Stereo without epipolar lines: A maximum-flow formulation. International Journal
of Computer Vision, vol. 34, no. 2/3, pp. 1–15 (1999).
12. Boykov, Y., Veksler, O., Zabih, R.: Fast approximate energy minimization via graph cuts.
IEEE Transaction on Pattern Analysis and Machine Intelligence, vol. 23, no. 11, pp. 1222–
1239 (2001).
13. Marr, D., Poggio, T.A.: A computational theory of human stereo vision. RoyalP, vol. B, no.
204, pp. 301–328 (1979).
14. Grimson, W.E.L.: A computer implementation of a theory of human stereo vision. Royal,
vol. B, no. 292, pp. 217–253 (1981).
15. Candocia, F., Adjouadi, M.: A similarity measure for stereo feature matching. IEEE Trans-
action on Image Processing, vol. 6, pp. 1460-1464 (1997).
16. Scharstein, D., Szeliski, R.: High-accuracy stereo depth maps using structured light. Pro-
ceedings of IEEE Computer Society Conference on Computer Vision and Pattern Recogni-
tion, vol. 1, pp. 195-202, Madison, WI (2003).
17. Jolion, J.M.: Computer Vision Methodologies. CVGIP: Image Understanding, vol. 59, no.
1, pp. 53–71 (1994).
18. http://cat.middlebury.edu/stereo/
19. http://www.videredesign.com/
20. Konolige, K.: Web site. http://www.ai.sri. com/software/SVS (2006).
21. Konolige, K.: Small vision systems: hardware and implementation. Intl. Symp. On Robot-
ics Research, pages 111–116 (1997).
45