ACKNOWLEDGEMENTS
This research was funded by Millenium Nucleus
Center for Web Research, Grant P04-067-F, Chile.
Portions of the research in this paper use the FERET
database of facial images collected under the FERET
program.
REFERENCES
BioID, 2005.Face Database. Available on August 2005 in:
http://www.bioid.com/downloads/facedb/index.php
Cristinacce, D. and Cootes, T., 2003. “A Comparison of
two Real-Time Face Detection Methods”, 4th IEEE
Int. Workshop on Performance Evaluation of Tracking
and Surveillance – PETS 2003, pp. 1-8, Graz, Austria.
Fröba, B. and Küblbeck, Ch., 2002. Robust face detection
at video frame rate based on edge orientation features.
5th Int. Conf. on Automatic Face and Gesture
Recognition FG - 2002, pp. 342–347.
Fröba, B. and Ernst, A., 2004. “Face detection with the
modified census transform”, 6th Int. Conf. on Face
and Gesture Recognition - FG 2004, pp. 91–96, Korea.
Delakis, M. and Garcia, C., 2004. “Convolutional face
finder: A neural architecture for fast and robust face
detection”, IEEE Trans. Pattern Anal. Mach. Intell.,
26(11):1408 – 1423.
Dudek, G., and Jenkin, M., 2002. Computational
Principles of Mobile Robotics, Cambridge University
Press.
Isard, M., and Blake, A., 1998. “Condensation –
Conditional Density Propagation for Visual Tracking”,
Int. J. of Computer Vision, Vol. 29, N. 1, pp. 5—28.
Lastra, R., Vallejos, P., and J. Ruiz-del-Solar, 2004.
“Integrated Self-Localization and Ball Tracking in the
Four-Legged Robot Soccer League”, 1st IEEE Latin
American Robotics Symposium – LARS 2004, pp. 54
– 59, Oct. 28 – 29, México City, México.
Li, S.Z., Zhu, L., Zhang, Z.Q., Blake, A., Zhang, H.J. and
Shum, H., 2002. “Statistical Learning of Multi-view
Face Detection”, 7th European Conf. on Computer
Vision – ECCV 2002, (Lecture Notes in Computer
Science; Vol. 2353), pp. 67 – 81.
PETS, 2003. Home Page. Available on August 2005 in:
http://www.cvg.cs.rdg.ac.uk/PETS-ICVS/pets-icvs-
db.html
Phillips, P. J., Wechsler, H., Huang, J.and Rauss, P., 1998.
“The FERET database and evaluation procedure for
face recognition algorithms,” Image and Vision
Computing J., Vol. 16, no. 5, pp. 295-306.
Rowley, H., Baluja, S. and Kanade, T., 1998. “Neural
Network-Based Detection”, IEEE Trans. Pattern Anal.
Mach. Intell., Vol.20, No. 1, 23-28.
Ruiz-del-Solar, J., Vallejos, P., Lastra, R., Loncomilla, P.,
Zagal, J.C., Morán, C., and Sarmiento, I., 2005b.
“UChile1 2005 Team Description Paper”, RoboCup
2005 Symposium, July 13 – 17, Osaka, Japan.
Schapire, R.E. and Singer, Y., 1999. Improved Boosting
Algorithms using Confidence-rated Predictions,
Machine Learning, 37(3):297-336.
Schneiderman, H., 2004. Feature-Centric Evaluation for
Efficient Cascade Object Detection, IEEE Conference
of Computer Vision and Pattern Recognition – CVPR
2004, pp. 29 - 36.
Sung, K. and Poggio, T., 1998. “Example-Based Learning
for Viewed-Based Human Face Deteccion”, IEEE
Trans. Pattern Anal. Mach. Intell., Vol.20, N. 1, 39-51.
UCHFACE, 2005. Computational Vision Group,
Universidad de Chile. Available on August 2005 in:
http://vision.die.uchile.cl/
Verschae, R. and Ruiz-del-Solar, J., 2003. “A Hybrid Face
Detector based on an Asymmetrical Adaboost Cascade
Detector and a Wavelet-Bayesian-Detector”, Lecture
Notes in Computer Science 2686 (IWANN 2003),
Springer, pp. 742-749, Menorca, Spain.
Verschae, R., Ruiz-del-Solar, J., Correa, M., 2006a.
Gender Classification of Faces Using Adaboost, In
Proc of CIARP, LNCS 4225.
Verschae, R., Ruiz-del-Solar, J., Correa, M. and Vallejos,
P. 2006b. A Unified Learning Framework for Face,
Eyes and Gender Detection using Nested Cascades of
Boosted Classifiers, Tech.Report UCH-DIE-VISION-
2006-02, Dept. of Elect. Eng., Universidad de Chile.
Viola, P. and Jones, M., 2001. "Rapid object detection
using a boosted cascade of simple features", IEEE
Conf. on Computer Vision and Pattern Recognition -
CVPR, Kauai, HI, USA, 2001, pp. 511 - 518.
Wu, B., AI, H. , Huang, C. and Lao, S., 2004. “Fast
rotation invariant multi-view face detection based on
real Adaboost”, 6th Int. Conf. on Face and Gesture
Recognition - FG 2004, pp. 79–84, Seoul, Korea.
Figure 5: Examples of the face detection and tracking
system for AIBO robots. The system detect faces and
performs gender classification. When the resolution of the
faces is larger than 50x50 pixels it detects also the eyes.
VISAPP 2007 - International Conference on Computer Vision Theory and Applications
30