are not preceding them. Giving up this principle
would jeopardise the efficiency and thus
practicability.
We have presented two example systems solving
quite different tasks and operating in a different way.
This demonstrates exemplarily that the GESTALT
interpreter is a useful tool for a broad range of
recognition applications. However, it cannot solve
the problems alone.
Preliminary to its application iconic image
processing tools and segmentation procedures for
the primitives are required. It is hard to mend on the
interpretation level what has been missed and
spoiled in the processing chain before.
Moreover, for many tasks, a final or approximate
interpretation configuration is not sufficient as
result. Further processing and decisions are needed
after the interpretation has been terminated. This
may be quite simple, such as giving the best object
ematrix as result in the system presented in section
4.2. Or a little more complicated – such as giving a
threshold for the quality of the objects
ematrix and
in case there is no better one take the best object
homography. Such system may also interact with a
Kalman filter for flight control of an unmanned
aircraft in both directions – getting prior information
from it and handing measurements of epipole and
rotation to it.
The decision system following on top of the
saliency recognition system outlined in section 4.1.
may either be an AI-reasoning system or also a
human interpreter. Both require a sophisticated
interface.
REFERENCES
Christensen, H. I., Nagel, H.-H. (eds), 2006.Cognitive
Vision Systems, Springer, Berlin LNCS 3948, pp. 183-
198
Draper, B., Collins, R., Brolio, J., Hanson, A., Riseman,
E., 1989. The Schema System, IJCV, Vol. 2 pp. 209-
250.
Janzen, M., 1988. confluent String Rewriting, Springer,
Berlin.
Lütjen, K., 1986. Ein Blackboard-basiertes
Produktionssystem für die automatische
Bildauswertung. In: Hartmann, G. (ed.)
Mustererkennung 1986, DAGM 1986, Springer,
Berlin, Informatik Fachberichte 125, pp. 164-168.
Lütjen, K., 2001. Systeme und Verfahren für strukturelle
Musteranalysen mit Produktionsnetzen, Diss., Univ. of
Karlsruhe, institute for communications engineering,
ISSN: 1433-3821.
Matsuyama, T., Hwang, V. S.-S., 1990. Sigma a
Knowledge-based Image Understanding System,
Plenum Press, New York.
Michaelsen E., Stilla U., 2002. Probabilistic Decisions in
Production Nets: An Example from Vehicle
Recognition. In: Caelli T., Amin A., Duin R. P. W.,
Kamel M., Ridder D. de (eds). Structural, Syntactic
and Statistical Pattern Recognition SSPR/SPR 2002,
Springer, Berlin, LNCS 2396, pp. 225-233.
Michaelsen E., Soergel U., Thoennessen U., 2006a.
Perceptual Grouping in Automatic Detection of Man-
Made Structure in high resolution SAR data. Pattern
Recognition Letters, Vol. 27, No. 4, pp. 218-225.
Michaelsen, E., von Hansen, W., Kirchhof, M., Meidow,
J., Stilla U., 2006b. Estimating the Essential Matrix:
GOODSAC versus RANSAC. ISPRS Symposium on
Photogrammetric Computer Vision (PCV 2006).
Niemann, H., 1989. Pattern Analysis and Understanding,
Springer, Berlin.
Nister, D., 2004. An Efficient Solution to the Five Point
Relative Pose Problem, IEEE PAMI, vol. 26, no. 6,
pp. 756–769.
Sagerer, G., 1982. Darstellung und Nutzung von
Expertenwissen für ein Bildanalysesystem, Diss.,
Univ. of Erlangen-Nürnberg, Springer, Inormatik
Fachberichte 104, Berlin.
Stilla U., Michaelsen E., 1997. Semantic modelling of
man-made objects by production nets. In: Gruen A.,
Baltsavias EP., Henricsson O. (eds). Automatic
extraction of man-made objects fromaerial and space
images (II). Birkhäuser, Basel, pp. 43-52.
MEANING AND EFFICIENCY IN THE GESTALT-SYSTEM - An Approach to Automatic Image Description
193