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Abstract: Current Level of Detail (LoD) approaches for triangle meshes use variably triangulated mesh patches in 
order to approximate the original mesh surface. The approximation is synthesized from some of these 
patches, which have to cover the whole surface and must not intersect each other. The patches are chosen 
corresponding to the necessary view dependent triangulation. This paper addresses the creation of the re-
quired hierarchical data structures, in order to enable Level of Detail synthesis for very large triangle 
meshes. Because of the limited amount of internal memory, most of the mesh data reside in external mem-
ory during the process. Due to the high access latency of external memory, commonly used algorithms for 
small meshes are hardly applicable for so called “Out of Core” meshes. Other methods have to be found that 
overcome the problems with the external memory. 

1 INTRODUCTION 

Widely available massive triangle meshes that are 
for instance results of highly detailed laser scans, 
demand special algorithms in order to explore them 
interactively. 

Due to its size the complete data set does not fit 
into the internal memory of current PC hardware. 
Thus, only parts of the mesh can be used for a real-
time exploration, while most of the data have to re-
main in external memory. This demands fast swaps 
between external and internal memory. 

Thus, interactive Level of Detail (LoD) algo-
rithms use mesh patches, in order to synthesize ap-
proximations of the original mesh. These mesh 
patches have different levels of detail and can be 
merged into a mesh which covers the complete sur-
face of the original mesh. 

This paper describes the creation of the neces-
sary data structures for a patch-based LoD algorithm 
in external memory. Due to the speed limitations of 
external memory devices, the process is serialized as 
much as possible and uses efficient caching. 

First, a short selection of related articles is given 
in the next section. The third section describes the 
usage and the creation of so called “patch trees”, 
which enable a patch based LoD synthesis. Finally 
some results an a short conclusion are given in the 
following sections. 

2 RELATED WORK 

Popular LoD schemas, such as “edge collapse”-
hierarchies for arbitrary meshes (Hoppe, 1997) or 
ROAM for height-field meshes (Duchaineau, 2001) 
are normally used with small data sets and have a 
very fine granularity. For these examples, the granu-
larity for LoD operations is two triangles and creates 
a high CPU load during mesh updates. Furthermore, 
memory swap operations are very inefficient for 
such a fine granularity, because external memory 
operations are only efficient for larger blocks of 
memory and sequential access. 

In (Hoppe, 1998) an “Out-of-Core” terrain ren-
dering system is presented, that creates a Progressive 
Mesh in external memory. Therefore the terrain map 
is divided into blocks, which are independently sim-
plified (borders must not be changed). After that, 
these blocks are merged and simplified again, until 
only one block remains. The externally stored “edge 
collapse”-hierarchy is used to approximate the origi-
nal terrain data set. 

Newer approaches (Cignoni, 2003, 2004, 2005) 
use mesh patches to assemble the mesh approxima-
tion. The first approach uses the ROAM hierarchy 
together with a batched height-field mesh, while the 
second approach can also be used for arbitrary 
meshes. The third approach generalizes the MT-
hierarchy (Puppo, 1996) data structure for the use 
with patches. The patches in these approaches con-
tain many triangles and thereby increase the granu-
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larity of the LoD algorithm. This also reduces the 
necessary hierarchy structure that stores how patches 
can be substituted. Such smaller hierarchy structures 
furthermore reduce the CPU-load during mesh up-
dates. 

3 PATCH TREES 

A patch tree is a data structure that describes the 
surface of a triangle mesh with different levels of 
detail. All nodes of the tree contain compact mesh 
patches, which are used to synthesize view depend-
ent approximations of the original mesh. The leaf 
nodes contain the original geometry of the mesh, 
while parent nodes always contain a simplified ver-
sion of the geometry of their child nodes. 

In the context of this paper, the tree is con-
structed with a number of levels that all cover the 
complete mesh surface. This means that all leaves of 
the tree share the same level and the path length of 
all leaf nodes to the root is equal. Figure 1 shows an 
example of a typical patch tree. 

 

 
Figure 1: Simple patch tree structure. 

Such patch trees can be used to create approxima-
tions of the original mesh with a restricted cut across 
the tree. The cut is constrained to prevent adjacent 
patches in the approximation that are more than one 
level apart. This constraint enables the pre-
computation of the  transitions between adjacent 
patches in different levels of the tree. 

3.1 Out of Core Creation 

The creation of patch trees for very large triangle 
meshes, which do not fit into the internal memory, is 
very challenging. Due to the evenly distributed ac-
cesses to the surface during the construction of a 
patch tree, a direct adoption of standard algorithms 
is hardly applicable. Both, the greedy construction of 
patches and the surface simplification demand ran-
dom access to the surface data. Due to the high ac-
cess latency of the external memory, most of the 
process time would be spent waiting for the external 
memory feedback. 

In order to reduce the negative effect of external 
memory access, intelligent methods have to be used 
to reduce random accesses to the surface. 

One very important tool to achieve this is the  
external heap. This heap enables to serialize many 
accesses to external memory by a fast and latency-
optimized sorting of items in the external memory. 
Further optimizations can be reached by minimizing 
the random accesses to the external memory with 
intelligent caching. 

The process queue, which is used to create the 
patch tree consists of three steps: 

 Create leaf patches 
 Straighten borders of leaf patches 
 Create patch hierarchy 
These steps will be further described now. 

3.1.1 Create Leaf Patches 

In this step, the triangle mesh (indexed mesh) is 
segmented into patches. Therefore an average num-
ber of triangles per patch is chosen (e.g. 1000 trian-
gle/patch) and used to determine the number of leaf 
patches. 

During the creation of the desired number of 
patches from the original triangles, all triangles are 
treated as patches. First the neighbor-patches of all 
triangular patches are determined. Because the mesh 
does not fit into internal memory, the process is seri-
alized with external heaps. Therefore all patches are 
brought to an external heap, weighted with each of 
their vertex indices in ascending order. Now the 
patches are read back from the heap, grouped by 
equal vertex indices. The neighborhood in each 
group is found according to the common vertex in-
dex. After the neighbor has been set, the resulting 
triangle is brought to another heap, weighted with 
the original triangle index. Now the triangles are 
read back from the second heap. Three items are 
read from the heap at a time that belong to the same 
triangular patch and contain the neighbors. During 
the same process, the vertex positions can be associ-
ated with each patch, in order to determine its area 
and border segment lengths. 

The merge process, which iteratively merges the 
two best possible patches into a new patch, cannot 
be serialized in the way seen before. Thus the ran-
dom accesses have to be reduced by intelligent cach-
ing. The priority of the merge operations is deter-
mined by the compactness of their results. Each 
patch is tested with all adjacent patches and the best 
result is chosen as merge-target. The compactness is 
measured as circle similarity. The area and the out-
line of the resulting patch is known and thus the 
similarity to a circle can be computed. In this ap-
proach, the following measure is used: 
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This measure prefers short outlines such as in 

(Sanders, 2001) but also prevents large areas with 
small outlines, which could occur on separated fea-
tures such as legs or arms. 

The caching is realized with an octree, in order 
to make use of spatial coherence. The merge algo-
rithm reads an octree node and merges all patch-
pairs whose priority is locally minimal. When no 
further merges are possible in the internal memory 
part, this region is extended around the octree-node 
in internal memory that contains the lowest  merge 
priority. There will always be patches (border 
patches), whose adjacent patches still reside in ex-
ternal memory and thus prevent the computation of a 
merge priority. Patches adjacent to border patches 
cannot be used for merging, because it is impossible 
to determine whether their priorities are locally 
minimal. Thus there will always remain patches with 
low priorities in internal memory, which can be used 
to extend the internal memory footprint until all re-
maining patches reside in internal memory. 

This process continues until no further, locally 
minimal merge operations are possible. When the 
internal memory usage exceeds a given threshold, 
parts of the internal memory are written back to the 
octree. During the merge process, the indices of the 
two merged patches and of their parent patch are 
stored into an external heap, weighted with their 
compactness measure (descending). When the com-
pactness value of one of the child patches is higher 
than the one of the resulting patch, the highest com-
pactness measure is associated with the heap item. 
This enables refining the resulting binary hierarchy 
of patches by simply removing items from the heap. 
After a number of items was removed from the heap, 
the leaf patches and their binary subtree can be col-
lected from the heap. The leaf nodes of the subtrees 
contain the associated triangles of the patch. 

3.1.2 Straighten Patch Borders 

The leaf patches, which were generated in the last 
paragraph, have relatively rough borders. To im-
prove the synthesis of approximations, the borders 
should be smoothed. Figure 2 shows a the difference 
between the initial rough borders and the straight-
ened borders. It is visible that the general shape was 

preserved in the smoothing process, while many 
small corners were smoothed. 

 
Figure 2: Straightened patch borders. 

To straighten the borders of the patches, the path 
length has to be shortened between two sequenced 
patch corners. The shape of the patches is preserved 
with the use of local shorten-operations only. Only 
vertices in the direct neighborhood of the path (1-
neighborhood) can be used in the optimization. Due 
to the large amount of data that has to be processed, 
this process is serialized again. 

The optimization heap is constructed from the 
triangles of the surface. The triangles are first sorted 
by their patch index with another heap. This enables 
to collect the triangles per patch. Then each triangle 
is brought to the optimization heap. The triangles are 
weighted corresponding to the data associated with 
the patch. If all adjacent patches have higher indices, 
the patch index of the triangle is chosen. Otherwise 
the lowest index of the adjacent patches is chosen. 
This ensures that each triangle occurs only once in 
the optimization heap. After the optimization heap is 
initialized, all triangles with the same priority are 
read from the heap into the internal memory. In in-
ternal memory the optimization for the available 
borders between the patches can be computed, by 
iteratively shortening the border path in the local 
neighborhood. Only the 1-neighborhood (1 vertex 
distance to the previous path) is considered during 
the optimization. After that, the resulting triangles 
are written back to external memory. If the triangle 
is associated with a patch whose adjacent patches 
have all higher indices than the current priority, this 
triangle is written to the result heap and weighted 
with its associated patch index. Otherwise the trian-
gle is brought back to the optimization heap, 
weighted with the lowest index among the associ-
ated patch and its direct neighbors that is greater 
than the current priority. This process is repeated 
until all triangles are situated in the result heap. 
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Figure 3: Example patches. 

Figure 3 shows an example for this process. The 
surface is divided into six patches and all patch bor-
ders have to be tested for optimizations. First the 
optimization heap is initialized with all triangles of 
the six patches. In this example w

pT describes the set 
of triangles that belongs to patch p and has the prior-
ity w. The initial heap now looks like this: 

0
0T , 0

1T , 0
2T , 0

3T , 0
5T , 1

4T  
First the triangles with the priority 0 are read 

from the heap. The borders between the patches 0 
and its neighbors 1, 2, 3, 5 are tightened. After that, 
all triangles of patch 0 are written to the result heap, 
because all border segments have been processed. 
All other triangles are written back to the optimiza-
tion heap, weighted with the next larger patch index 
among the neighbor patches. This results in the fol-
lowing sequence: 

1
1T , 1

2T , 1
3T , 1

4T , 2
5T  

Now all triangles with a priority of 1 are read 
from the optimization heap. The border segments 
between patch 1 and patches 2, 3 and 4 are 
smoothed. The border between patch 1 and patch 0 
has already been smoothed, when patch 0 was proc-
essed. After that, the triangles of patch 1 are brought 
to the result heap while the other triangles are writ-
ten back to the optimization heap, weighted with the 
next patch index in their neighborhood. This results 
in the optimization heap: 

2
2T , 2

4T , 2
5T , 3

3T  
The optimization continues, until all triangles are 

brought to the result heap. Then all triangles can be 
collected from the result heap, according to their 
final patch index. 

3.1.3 Create Patch Hierarchy 

In this last step, the final patch tree is created from 
the given leaf patches. This includes the creation of 
new patch levels together with geometric simplifica-
tions of the surface. The geometry is simplified with 
iterative half-edge collapse (Kobbelt, 1996) opera-

tions. The sequence of collapses is controlled by the 
QEM (Garland, 1996). 

The patch tree structure should completely fit 
into the internal memory now. Thus, all further 
merge operations are executed without access to 
external memory. The triangle data of the patches 
however, does not fit into the internal memory and 
has to remain in external memory. Thus, the process 
of surface simplification has to be optimized for 
external memory as well. 

Before the process starts, initial QEM matrices 
are computed for each vertex. This can easily be 
serialized with external heaps again. After that, the 
new patch level is created by halving the number of 
current patches. Now the number of triangles has to 
be halved from the current patch level to the new 
patch level. Therefore all triangles and vertices of 
the current level are written to a temporary file, as-
sociated with their new patch index. Now the ge-
ometry data of each patch can be read as one block 
from external memory. 

The geometric simplification is similar to the 
creation of the initial patches in the beginning. First, 
an arbitrary patch is read from the external memory 
to the internal memory. Then the vertices in internal 
memory are classified into border, near-border and 
inner vertices. The border vertices have the property 
that at least one direct neighbor is not yet in the in-
ternal memory. The near-border vertices must have 
at least one border vertex in their neighborhood, 
while inner vertices have only other inner or near-
border vertices in their neighborhood. Thus, col-
lapse targets can be found for near-border and inner 
vertices only, while locally minimal collapse opera-
tions can be found among inner vertices only. 

After the patch geometry is read and classified, 
all possible locally minimal collapse operations are 
performed. For each collapse operation, the indices 
of both collapsed vertices are brought to an external 
heap (descending), weighted with their collapse er-
ror. If one of the collapsed vertices had a higher 
QEM error, this error is used as heap priority. Then 
the near-border vertex with the least QEM error is 
chosen, in order to expand the region in the internal 
memory around the associated patches (vertices can 
be shared by multiple patches). The geometry of the 
new patches is read from external memory and clas-
sified. This includes an update of some vertices, 
which already reside in internal memory, because 
their border/near-border status could have changed. 
Again, all locally minimal collapse operations are 
performed and the region in the internal memory is 
expanded. This process is repeated, until no further 
expansion is possible. Whenever the amount of used 
internal memory exceeds a given threshold, the ge-
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ometry of patches with the highest near-border 
QEM errors, is moved back to external memory. 

After the process has finished, all patches have 
to be checked whether they contain inner vertices or 
not. If inner vertices remained, the process has to be 
started again with one of these patches. Such non-
processed inner vertices can occur under some cir-
cumstances, when a region is surrounded by com-
pletely processed patches and is then written to ex-
ternal memory. 

After the simplification, we get a heap that con-
tains a sequence of collapse operations and thus the 
simplification hierarchy. To extract the geometry for 
the new patch tree level, the result vertices have to 
be refined. This is done by removing the first items 
from the heap, until the correct number of triangles 
is reached. Now the geometry is adopted to the re-
fined vertices and stored according to the patches in 
the new patch level. 

The creation of new patch levels and the simpli-
fication of the geometry are repeated, until the num-
ber of patches reaches a given threshold. The result 
is a patch tree, with a structure like the one in the 
first figure. All leaf nodes are situated in the same 
level and have a parent node in the next level, except  
for the root node. 

3.2 LoD Synthesis 

Once the patch tree has been created, it can be used 
to assemble approximations of the original mesh. To 
measure the effect of an patch refinement in the ap-
proximation, object space errors have to be com-
puted. Therefore all child patches are recursively 
projected to their parent patches. Now the average 
squared distance of all vertices to their projection is 
computed. The projection is computed by locking 
the common vertices in both levels and by placing 
the other vertices according to their locked 
neighbors. The placement is determined with the 
mean value coordinates (Floater, 2001). After the 
vertices of the child patches have been projected to 
their parent patch, the average squared distance to 
their original position is computed. Furthermore,  the 
center and radius of a bounding sphere for each 
patch is computed to enable view frustum culling. 

For a view-dependent approximation a priority 
queue (descending) is initialized with the root 
patches. The object space error of each queued patch 
is computed by dividing the average squared dis-
tance of the patch with the squared distance to the 
viewer. Furthermore, a view frustum test is per-
formed for each patch, to determine whether it is 
visible. Invisible patches are marked and assigned to 
a view dependent error value of zero. 

During the refinement, the first item is iteratively 
read from the priority queue and used for refine-
ment. The refinement step is constrained to allow 
only patch splits, if the parent patches of its neighbor 
patches (in the same patch level) have already been 
split. If not, these parent patches are split before the 
current patch (forced split). This ensures a maximum 
level difference of 1 between adjacent patches in the 
final approximation. 

Before the approximation is sent to the GPU, all 
transitions between patches of different levels have 
to be created. Due to the constrained possible transi-
tions, all states of triangles in the transition area can 
be computed in an offline process. Figure 4 shows 
how a border segment of a higher level patch is 
adopted to a lower level patch. 

 

 
Figure 4: Patch transition. 

The changes in the geometry due to the level 
transition introduce new surface errors in the ap-
proximated surface, but these errors occur only at 
borders to coarser detail-levels which have an higher 
approximation error anyway. 

The reference to all vertices in the high level 
patch, which do not occur in the low level patch, are 
moved to the nearest common vertex on the border 
segment. Finally the geometry of all patches can be 
sent to the GPU. 

4 RESULTS 

The patch tree construction process has been imple-
mented and tested with different meshes. Due to the 
early prototype status of the software, only water-
tight meshes (no holes in the surface) can be proc-
essed for now. Table 1 lists four test meshes. 

Table 1: Test meshes. 

Name Triangles Vertices 
Armadillo 345,944 172,974 
Artificial 1 8,388,608 4,194,306 
Artificial 2 33,554,432 16,777,218 
Artificial 3 134,217,728 67,108,866 
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Due to the lack of large watertight meshes the 
last three meshes were computed with a fractal sub-
division method on a sphere surface. There are only 
differences  in the details structure. Figure 5 shows 
the leaf patches of the first two meshes. 

 

 
Figure 5: Leaf patches of first two test meshes. 

The results of the patch tree construction process 
can be read on table 2. Patch trees with average 
patch sizes of 1,000 triangles have been built for all 
test meshes. 

Table 2: Patch tree results. 

Name Leaf 
Patches 

Tighten 
Borders 

Final Hi-
erarchy 

Armadillo 71 s 46 s 102 s 
Artificial 1 3,495 s 2,145 s 4,833 s 
Artificial 2 10,089 s 6,391 s 16,408 s 
Artificial 3 45,228 s 29,810 s 71,547 s 

 
The first two meshes have been tested on a 2 

GHz Pentium 4 machine with 1 GB of RAM and a 
SCSI hard disc. Due to its minor size, the “Arma-
dillo” mesh was processed very fast. Almost all ex-
ternal memory operations have been cached by the 
operating system. The last two meshes have been 
processed with an Athlon64 3800+ with 4 GB of 
RAM and a SATA hard disc. The size of the usable 
memory (except for the final patch hierarchy struc-
ture) was set to 150 MB. The results still show a 
relatively long processing time for the large meshes. 
However, basic simplification algorithms that do not 
care about spatial coherence or serialization, would 
spend even weeks to process such large data-sets. 
Moreover there is enough room for further speedups. 
Especially a less primitive version of the external 
heap would be very helpful. 

The resulting patch hierarchies can be used for 
interactive exploration of the corresponding triangle 
meshes. The low complexity of the patch trees re-
duces the CPU load and thus enable better usage of 
the GPU bandwidth. Surely the data should be fur-
ther processed. First the sequence of patch-data in 
external memory can be improved by grouping se-

mantically near parts of the tree together. Further-
more the amount of data for the patches can be re-
duced by striping. And if a number of vertices below 
65,536 can be guaranteed for each patch, the indices 
can be stored with 16 bits instead of 32.  

5 CONCLUSIONS 

In this paper an process queue has been presented 
which automatically generates patch trees from large 
triangle meshes. A two day processing time for a 
128M triangle mesh is not bad but improvable. 
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