with their denotation. As these terms are almost
unambiguous, data mining techniques can be applied
on medical or pathological findings (e. g., (McDonald
et al., 1998; Moore and Berman, 2000)) to ground
spatial related correlations between the records in
the database. As an example, it could be revealed
that an artificial bone often negatively affected other
organs, muscles or bones; or e. g., if there is a
spatial relation between 2 organs, which often suffer
damages together.
REFERENCES
Agrawal, R., Imielienski, T., and Swami, A. (1993). Mining
Association Rules between Sets of Items in Large
Databases. In Conf. on Management of Data, pages
207–216.
Bernhardsen, T. (2002). Geographic Information Systems.
John Wiley and Sons.
Berthold, M. R. and Hand, D. J., editors (2003). Intelligent
Data Analysis, An Introduction. Springer, 2nd edition.
Borgelt, C. (2003). Efficient Implementations of Apriori
and Eclat. In 1st WS of Frequent Item Set Mining
Implementations (FIMI).
Diepstraten, J., Weiskopf, D., and Ertl, T. (2002). Trans-
parency in interactive technical illustrations.
Ester, M., Frommelt, A., Kriegel, H.-P., and Sander, J.
(2000). Spatial Data Mining: Database Primitives,
Algorithms and Efficient DBMS Support. Data
Mining Knowledge Discovery, 4(2/3):193–216.
Fellbaum, C., editor (1998). WordNet: An Electronic
Lexical Database. MIT Press, Cambridge, MA.
Flavin, P. G. and Totton, K. A. (1996 ). Computer
Aided Decision Support in Telecommunications. BT
Telecomm. Series. Chapman Hall Publishers, London.
Frawley, W. J., Piatetsky-Shapiro, G., and Matheus, C. J.
(1992). Knowledge Discovery in Databases: An
Overview. AI Magazine, 13(3):57–70.
Gooch, B. and Gooch, A. (2001). Non-Photorealistic
Rendering. A. K. Pteres, Natick.
Hand, D., Mannila, H., and Smyth, P. (2001). Principles of
Data Mining. MIT Press, Cambridge.
Hartmann, K., Schlechtweg, S., Helbing, R., and Strothotte,
T. (2002). Knowledge-Supported Graphical Illustra-
tion of Texts. In Int. Working Conf. on Advanced
Visual Interfaces, pages 300–307.
Hartmann, K. and Strothotte, T. (2002). A Spreading
Activation Approach to Text Illustration. In 2nd Int.
Symp. on Smart Graphics, pages 39–46.
Hipp, J., Güntzer, U., and Nakhaeizadeh, G. (2002). Data
Mining of Association Rules and the Process of
Knowledge Discovery in Databases. In Industrial
Conference on Data Mining, pages 15–36.
Hotho, A., Nürnberger, A., and Paaß, G. (2005). A Brief
Survey of Text Mining. GLDV-Journal for Comp.
Linguistics and Language Technology, 20(1):19–62.
Keim, D. A. (2002). Information Visualization and Visual
Data Mining. IEEE Transactions on Visualization and
Compututer Graphics, 7(1):100–107.
McDonald, J. M., Brossette, S., and Moser, S. A.
(1998). Pathology Information Systems: Data Mining
Leads to Knowledge Discovery. Archives of Pathol-
ogy & Laboratory Medicine in Health & Fitness,
122(5):409–411.
Miller, H. J. and Han, J., editors (2001). Geographic Data
Mining and Knowledge Discovery. Taylor & Francis,
London.
Moore, G. W. and Berman, J. J. (2000). Anatomic
Pathology Data Mining. In Cios, K. J., editor, Medical
Data Mining and Knowledge Discovery, pages 61–
107. Springer Verlag, Berlin.
Orfor, S., Dorling, D., and Harris, R. (1997). Review of
Visualization in the Social Sciences: A State of the
Art Survey and Report. Technical report, School of
Geographical Sciences, University of Bristol, UK.
Salton, G., Allan, J., Buckley, C., and Singhal, A.
(1994). Automatic Analysis, Theme Generation, and
Summarization of Machine-Readable Texts. Science,
264:1421–1426.
Salton, G., Wong, A., and Yang, C. S. (1975). A Vector
Space Model for Automatic Indexing. Communica-
tions of the ACM, 18(11):613–620.
Schmidt, V. S. (1998). Turning Telecommunication Data
into Accessible Information with SDE and Data
Visualization Tools. In ESRI Europ. User Group Conf.
Shneiderman, B. (1996). The Eyes Have It: A Task by
Data Type Taxonomy for Information Visualization.
In IEEE Symp. on Visual Languages, pages 336–343.
Strothotte, T. and Schlechtweg, S. (2002). Non-
Photorealistic Computer Graphics: Modeling, Ren-
dering, and Animation. Morgan Kaufman, Los Altos.
Tan, P.-N., Steinbach, M., and Kumar, V. (2005). Introduc-
tion to Data Mining. Addison-Wesley.
Tufte, E. R. (1997). Visual Explanations: Images and
Quantitatives, Evidence and Narrative. Graphics
Press, Cheshire, Connecticut.
Viola, I., Kanitsar, A., and Gröller, M. E. (2004).
Importance-driven volume rendering. In Proceedings
of IEEE Visualization’04, pages 139–145.
Witten, I. H. and Frank, E. (1999). Data Mining: Practical
Machine Learning Tools and Techniques with Java
Implementations. Morgan Kaufmann.
Zaki, M., Parthasarathy, S., Ogihara, M., and Li, W. (1997).
New Algorithms for Fast Discovery of Association
Rules. In 3rd Int. Conf. on Knowledge Discovery and
Data Mining (KDD), pages 283–296.
Zienkiewicz, O. C. and Taylor, R. L. (2000). The
Finite Element Method. Vol 2: Solid Mechanics.
Butterworth-Heinemann, Oxford, 5th edition.
3D SPATIAL DATA MINING ON DOCUMENT SETS FOR THE DISCOVERY OF FAILURE CAUSES IN COMPLEX
TECHNICAL DEVICES
145