5 CONCLUSIONS
This paper presents a realistic transmission model of
rough surfaces. The model is derived based on the
statistical ray method. We have obtained an
analytical expression for single scattering. The
model has been compared to our Monte Carlo
simulations as well as to the simulations by others,
and good agreements have been achieved.
In future work, the model can be applied to
render realistic transmission effects. The model
could be taken into consideration to study object
translucency. On simulation to verify the analytical
model, we may generate 2D surfaces for given
and
, and compute the average of transmission
through the surfaces. The current model has not
considered multiple scattering, and both the model
and simulation have not considered polarization
effects. We will consider them in our further work.
REFERENCES
Ashikhmin, M., Premoze, S., Shirley, P., 2000. A
microfacet-based BRDF generator. In
Proc. of ACM
SIGGRAPH
, pp. 65-74.
Beckmann, P., Spizzichino, A., 1963.
The Scattering of
Electromagnetic Waves from Rough Surfaces
,
Macmillan, New York.
Blinn, J. F., 1977. Models of light reflection for computer
synthesized pictures. In
Proc. Siggraph, pp. 192-198.
Cook, R. L., Torrance, K. E., 1982. A reflection model for
Computer Graphics.
ACM Transactions on Graphics,
vol. 1, no. 1, pp. 7-24.
Dorsey, J., Edelman A., Jensen H. W., Legakis J., and
Pedersen H. K., 1999. Modeling and rendering of
weathered stone. In
Proc. Siggraph ‘99, pp. 225-234.
Fung, A. K., Chen, M. F., 1985. Numerical simulation of
scattering from simple and composite random
surfaces.
J. Opt. Soc. Am. A, vol. 2, no. 12, pp. 2274-
2284.
Glassner, A. S., 1995.
Principles of Digital Image
Synthesis
, Morgan Kaufmann Publishers, San
Francisco, CA.
Hanrahan, P., and Krueger W., 1993. Reflection from
layered surface due to subsurface scattering. In
Proc.
Siggraph ‘93
, pp. 165-174.
He, X. D., 1993. Physically-based models for the
reflection, transmission and subsurface scattering of
light by smooth and rough surfaces, with applications
to realistic image synthesis. Ph.D thesis, Cornell
University, Ithaca, New York.
He, X. D., Torrance, K. E., Sillion, F. X., Greenberg, D.
P., 1991. A comprehensive physical model for light
reflection. In
Proc. Siggraph, pp. 175-186.
Jensen, H. W., and Christensen P. H., 1998. Efficient
Simulation of Light Transport in Scenes with
Participating Media Using Photon Maps.
Computer
Graphics Proceedings (Proc. SIGGRAPH ’98
), pp.
311-320.
Jensen H. W., Marschner S. R., Levoy M., and Hanrahan
P., 2001. A practical model for subsurface light
transport. In
Proc. Siggraph ‘01, pp. 511-518.
Jensen H. W., and Buhler J., 2002. A rapid hierarchical
rendering technique for translucent materials.
ACM
Trans. Graph.
21, vol. 3, pp. 576-581.
Koenderink J., and Doorn A. van., 2001. Shading in the
case of translucent objects. In
Proc. SPIE, vol. 4299,
pp. 312-320.
Kubelka, P., and Munk, F., 1931. Ein Beitrag Zur Optik
Der Farbanstriche, Zeitschrift fr Technishen Physik, p.
593.
Lafortune, E. P. F., Foo, Sing-Choong, Torrance, K. E.,
Greenberg, D. P., 1997. Non-linear approximation of
reflectance functions. In
Proc. Siggraph, pp. 117-126.
Mertens, T., Kautz, J., Bekaert, P., Reeth, F. V., and
Seidel, H. –P., 2005. Efficient rendering of local
surface scattering. In
Computer Graphics Forum, vol.
24, pp. 41-49.
Nieto-Vesperinas, M., Sanchez-Gil, J. A., Sant, A. J.,
Dainty, J. C., 1990. Light transmission from a
randomly rough dielectric diffuser: theoretical and
experimental results.
Opt. Lett., vol. 18, no. 22, pp.
1261-1263.
Pharr, M., and Hanrahan, P., 2000. Monte carlo evaluation
of non-linear scattering equations for subsurface
reflection. In
Proc. Siggraph ‘00, pp. 75-84.
Phong, B., 1975. Illumination for computer generated
images.
Comm. of ACM, vol. 18, no. 6, pp. 311-317.
Stam, J., 2001. An illumination model for a skin layer
bounded by rough surfaces. In
Proceedings the 21th
Eurographics Workshop on Rendering Techniques
, pp.
39-52.
Sun, Y., 2007. Analytical framework for calculating
BRDFs of randomly rough surfaces.
J. Opt. Soc. Am.
A
, (to appear in March 2007). Currently available
online at http://josaa.osa.org/upcoming.cfm.
Torrance, K. Sparrow, E. M., 1967. Theory for off-
specular reflection from roughened surfaces.
J. Opt.
Soc. Am.
, vol. 57, no. 9, pp. 1105-1114.
Ward, G. J., 1992. Measuring and modeling anisotropic
reflection. In
Proc. SIGGRAPH, pp. 265-272.
Wang, R., Tran, J., and Luebke, D., 2005. All-Frequency
Interactive Relighting of Translucent Objects with
Single and Multiple Scattering, in ACM Trans.
Graphics (Proc. SIGGRAPH ’05), pp. 1202-1207.
APPENDIX
Here we derive the relationship between the
differential solid angles
o
d
and
n
dΩ . Given an
unit sphere (Figure 10), the area
BCD corresponds
to
n
d
and the area
BCD
′′′
to
o
dΩ . The points
,
,
, and
are coplanar, and similarly the
points
C , D , C
, and D
. The planes
BA B
′
and
DCD C
′
intersects at the line POQ , and the angle
REALISTIC TRANSMISSION MODEL OF ROUGH SURFACES
83