ORTHANT NEIGHBORHOOD GRAPHS - A Decentralized Approach for Proximity Queries in Dynamic Point Sets

Tobias Germer, Thomas Strothotte

2007

Abstract

This work presents a novel approach for proximity queries in dynamic point sets, a common problem in computer graphics. We introduce the notion of Orthant Neighborhood Graphs, yielding a simple, decentralized spatial data structure based on weak spanners. We present efficient algorithms for dynamic insertions, deletions and movements of points, as well as range searching and other proximity queries. All our algorithms work in the local neighborhood of given points and are therefore independent of the global point set. This makes ONGs scalable to large point sets, where the total number of points does not influence local operations.

References

  1. Arya, S., Das, G., Mount, D. M., Salowe, J. S., and Smid, M. (1995). Euclidean spanners: short, thin, and lanky. In STOC 7895: Proc. 27th annual ACM symposium on Theory of computing, pages 489-498.
  2. Basch, J., Guibas, L. J., and Hershberger, J. (1997). Data structures for mobile data. In SODA 7897: Proc. 8th annual ACM-SIAM symposium on Discrete algorithms, pages 747-756.
  3. Bentley, J. L. (1990). K-d trees for semidynamic point sets. In SCG 7890: Proc. 6th annual symp. on Computational geometry, pages 187-197.
  4. Bonabeau, E., Dorigo, M., and Theraulaz, G. (1999). Swarm Intelligence : From Natural to Artificial Systems. Oxford University Press, USA.
  5. Boubekeur, T., Heidrich, W., Granier, X., and Schlick, C. (2006). Volume-surface trees. Computer Graphics Forum (Proceedings of Eurographics 2006), 25(3):399- 406.
  6. Fischer, M., Lukovszki, T., and Ziegler, M. (1998). Geometric searching in walkthrough animations with weak spanners in real time. In ESA 7898: Proc. 6th Annual European Symposium on Algorithms, pages 163- 174.
  7. Fischer, M., Lukovszki, T., and Ziegler, M. (1999). Partitioned neighborhood spanners of minimal outdegree. In Proc. 11th Canadian Conf. on Computational Geometry (CCCG'99), pages 47-50.
  8. Fischer, M., Meyer auf der Heide, F., and Strothmann, W.-B. (1997). Dynamic data structures for realtime management of large geometric scenes. In ESA 7897: Proc. 5th Annual European Symposium on Algorithms, pages 157-170.
  9. Gottschalk, S., Lin, M. C., and Manocha, D. (1996). OBBTree: A hierarchical structure for rapid interference detection. Computer Graphics, 30(Annual Conference Series):171-180.
  10. James, D. L. and Pai, D. K. (2004). BD-Tree: Outputsensitive collision detection for reduced deformable models. ACM Transactions on Graphics (SIGGRAPH 2004), 23(3):393-398.
  11. Kim, D.-J., Guibas, L. J., and Shin, S. Y. (1998). Fast collision detection among multiple moving spheres. IEEE Transactions on Visualization and Computer Graphics, 4(3):230-242.
  12. Maheshwari, A., Vahrenhold, J., and Zeh, N. (2002). On reverse nearest neighbor queries. In Proc. 14th Canadian Conf. on Computational Geometry, pages 128- 132.
  13. Reeves, W. T. (1983). Particle Systems - A Technique for Modeling a Class of Fuzzy Objects. Computer Graphics (Proceedings of ACM SIGGRAPH 83), 17(3):359- 376.
  14. Reynolds, C. W. (1987). Flocks, Herds, and Schools: A Distributed Behavioral Model. Computer Graphics (Proceedings of ACM SIGGRAPH 83), 21(4):25-34.
  15. Ruppert, J. and Seidel, R. (1991). Approximating the ddimensional complete euclidean graph. In Proc. 3rd Canadian Conf. on Computational Geometry, pages 207-210.
  16. Samet, H. (1990). The design and analysis of spatial data structures. Addison-Wesley Longman Publishing Co., Inc., Boston, MA, USA.
  17. Schlechtweg, S., Germer, T., and Strothotte, T. (2005). RenderBots-Multi Agent Systems for Direct Image Generation. Computer Graphics Forum, 24(1):137- 148.
  18. Yao, A. C.-C. (1982). On constructing minimum spanning trees in k-dimensional spaces and related problems. SIAM J. Comput., 11(4):721-736.
Download


Paper Citation


in Harvard Style

Germer T. and Strothotte T. (2007). ORTHANT NEIGHBORHOOD GRAPHS - A Decentralized Approach for Proximity Queries in Dynamic Point Sets . In Proceedings of the Second International Conference on Computer Graphics Theory and Applications - Volume 1: GRAPP, ISBN 978-972-8865-71-9, pages 85-93. DOI: 10.5220/0002082800850093


in Bibtex Style

@conference{grapp07,
author={Tobias Germer and Thomas Strothotte},
title={ORTHANT NEIGHBORHOOD GRAPHS - A Decentralized Approach for Proximity Queries in Dynamic Point Sets},
booktitle={Proceedings of the Second International Conference on Computer Graphics Theory and Applications - Volume 1: GRAPP,},
year={2007},
pages={85-93},
publisher={SciTePress},
organization={INSTICC},
doi={10.5220/0002082800850093},
isbn={978-972-8865-71-9},
}


in EndNote Style

TY - CONF
JO - Proceedings of the Second International Conference on Computer Graphics Theory and Applications - Volume 1: GRAPP,
TI - ORTHANT NEIGHBORHOOD GRAPHS - A Decentralized Approach for Proximity Queries in Dynamic Point Sets
SN - 978-972-8865-71-9
AU - Germer T.
AU - Strothotte T.
PY - 2007
SP - 85
EP - 93
DO - 10.5220/0002082800850093