
PATTERN-BASED COLLABORATION IN AD-HOC TEAMS
THROUGH MESSAGE ANNOTATION

Daniel Schall, Robert Gombotz and Schahram Dustdar
Distributed Systems Group, Institute of Information Systems

Vienna University of Technology, Argentinierstrasse 8, 1040 Wien, Austria

Keywords: Collaboration Patterns, Message Annotation, Coordination Support, Interaction Patterns.

Abstract: In this paper we present a specification for annotating messages to enable computer-supported message
processing, addressing, and analysis. The benefits of annotating messages according to our XML based
specification are two-fold: Firstly, it allows computer support during collaboration by enabling automated
message addressing (i.e., determining who should get a message) and message management (e.g., managing
your messages according to activities, projects, and tasks). Secondly, it enables post-collaboration analysis
of messages and mining of message logs for patterns and for workflow models. We provide a proof of
concept by presenting how annotated messages may support and facilitate collaboration that happens
according to certain collaboration patterns. In addition to the patterns we have already introduced in our
previous work, we present more patterns such as Monitors that emphasize the applicability of computer
supported message handling.

1 INTRODUCTION

In our previous work we have made the case for
human interaction patterns in collaborative working
environments. A lot of communication in human
collaboration is message based.

The problem when trying to mine message logs
for pattern or workflow information is that in many
cases raw messages can (a posteriori) not be mapped
to a context or an activity in an automatic way. We
believe that the mining of a message’s content for
such information (i.e., through text mining
technologies) has not yet matured to a stage where it
can provide results that satisfy our needs in terms of
quality and reliability.

The shortcomings of automatic message
interpretation in terms of context and activity also
become apparent when attempting to provide
computer support for message management in terms
of relevance and prioritization (e.g., who should
receive a message and with what level of urgency).

Message-based collaboration highly relies on the
user being responsible for reading, interpreting, and
processing messages while very little support is
provided by messaging technologies. We witness
this every day when masses of spam messages are

delivered to our inboxes along with those messages
that are actually relevant to us. And within the
relevant messages there is little to no support for
ranking or ordering messages according to urgency,
relevance, or context.

2 COLLABORATION PATTERNS

The research conducted in our group aims at
developing a pattern language describing the
structure, dynamics, and the interaction flows
observed in human collaboration. In our earlier work
we have presented three initial patterns found in
software engineering and applied them to the
domain of CWE (Collaborative Working
Environments). (Dustdar and Hoffmann, 2006),
(Gombotz et al., 2006). These patterns were the
Broker, the Proxy, and the Master/Slave pattern
which in human collaboration can be interpreted as
receptionist, a secretary, and boss/assistant,
respectively. As an example, Figure 1 depicts a
Master/Slave pattern. An Initiator I starts an
interaction by sending a request to the Receiver R
(the Master in this pattern). R delegates sub-tasks to

84
Schall D., Gombotz R. and Dustdar S. (2007).
PATTERN-BASED COLLABORATION IN AD-HOC TEAMS THROUGH MESSAGE ANNOTATION.
In Proceedings of the Ninth International Conference on Enterprise Information Systems - SAIC, pages 84-91
DOI: 10.5220/0002353600840091
Copyright c© SciTePress

the Contributors C. Note that the interaction
between R and C may not be visible to I.

Figure 1: Delegation of sub-tasks (Master/Slave style).

In the following subsections we introduce a new
pattern in human collaboration which we termed
Monitor. The pattern is then further refined into four
subtypes based on the monitor’s involvement and
role in a collaboration.

2.1 Monitor Pattern

Monitoring is omnipresent in collaborative
environments and may even happen subconsciously.
It is done for different reasons and is achieved
through different methods which are discussed in
more detail along with the corresponding subtypes
of a Monitor in the following subsections.

We define a Monitor as an actor watching or
observing a given object of interest. In the domain
of human collaboration that monitored object may
be another actor, a group of actors and their
interactions, or a certain task or activity. For
example, a boss may monitor a subordinate and a
group leader may monitor other group members and
their interactions.

2.2 Subtypes of Monitor Pattern

Besides the different types of observed objects listed
in the previous subsection, Monitors can be
classified by the motivation underlying their action
and by the methods they have at hand to monitor
their object. We differentiate between four types of
monitoring based on the motivation underlying the
monitoring activity.

Informational Monitoring: The actor monitors an
object he is not directly related to or affiliated with.
His motivation for monitoring is not obvious to
others. An example is a team member monitoring
the activities of a more experienced colleague in
order to learn from him.

Observational Monitoring: A dependency between
the actor and the object he monitors is given. This
dependency is the motivation for monitoring since
he may be influenced by or may have to react to
certain events related to the monitored object. An
example is a team member monitoring a task which
his own task depends on, for example, his own task
relies on input generated by the other task.

Supervisional Monitoring: The Monitor is
responsible for or has authority over the object he
monitors. He has the right (or the obligation) to
intervene when necessary. An example drawn from
another pattern is a master monitoring the activity of
his slaves to ensure correct execution of the (sub)
tasks he assigned to them.

Coordinational Monitoring: The Monitor is
responsible for coordination of a team (or parts
thereof) and for efficient allocation of resources. He
is not interested in the details of an activity, but only
in information regarding an object’s status, for
example, availability of a person, or progress of a
task.

2.2.1 Student, or Studying Monitor

Definition: A Studying Monitor has no direct
relationship or dependency to the monitored object
and his monitoring activity is not driven by an
external necessity.

Characteristics: Studying Monitors may remain
undetected by the object that is being monitored.
Typically, a Studying Monitor does not directly
interact with the corresponding object, nor does he
request active reporting from it.

Methods of Monitoring: Since the Studying
Monitor is not affiliated with what he monitors his
methods of monitoring are limited. Typically, all
monitoring activities will have to be initiated by
himself and the information he may acquire may be
limited as well. Monitoring must not be intrusive,
and any direct access to the monitored object is
granted on a purely “voluntary” basis.

2.2.2 Dependant, or Dependent Monitor

Definition: A Dependent Monitor (DM) observes
objects that have an impact on himself or the tasks
he is involved in.

PATTERN-BASED COLLABORATION IN AD-HOC TEAMS THROUGH MESSAGE ANNOTATION

85

Characteristics: The Dependant Monitor is best
characterized by his ability to interact with his
monitored object while not having any authority
over it and thereby not being able to interfere with
the object’s activities.

Methods of Monitoring: Due to the explicit
dependency of the Monitor and the object of
interest, Dependent Monitors are granted certain
rights and opportunities to guarantee them sufficient
information. For example, Dependent Monitors may
be allowed not only to monitor publicly available
information, but may also be given the opportunity
to directly address, for example, actors involved in
the monitored task, when further information is
needed.

If provided by the object, DMs may be permitted
to subscribe for notifications that a given object
issues to dependent entities. In case of critical
dependencies, a DM may even have the right to
demand such notifications.

2.2.3 Supervisor, or Supervising Monitor

Description: A Supervisor is responsible for or has
the authority over the object he monitors. He also
has the right to manipulate the object, for example,
issue orders to a person, or influence the execution
of a task.

Characteristics: The Supervisor’s responsibility for
a given object implies both the right and the duty for
active intervention whenever necessary. A
Supervisor is the only subtype of a Monitor with the
right and opportunity to directly manipulate the
object.

Also, a Supervisor may have to be available to
objects he monitors when they request guidance.
Therefore, he may have to provide support upon
request.

Methods of Monitoring: Along with a Supervisor’s
control over the monitored object comes the right to
enforce active reporting by the object of interest in
whichever way considered to be suitable by the
Supervisor. This may include notifications regarding
relevant events, status or progress reports in desired
intervals, or even personal reports to him by a
monitored actor.

2.2.4 Coordinator, or Coordinating Monitor

Description: A Coordinator monitors the status of
objects in order to coordinate activities and to enable
efficient allocation of resources.

Characteristics: A Coordinator is not interested in
the actual “content” of activities, e.g., the content of
documents resulting from collaborative activities,
but only in the status of objects. Significant status
information could be availability of actors, e.g.,
“available” or “unavailable for 2 more hours”, and
progress of tasks, e.g., “90% completed”, or
“estimated completion in 3 days”.

Methods of Monitoring: Considering the
importance of effective and efficient coordination in
human collaboration, a Coordinator should typically
not be denied any information he considers to be
relevant. Therefore, Coordinators would be granted
rights regarding information they have access to.
Also, for example, in time critical situations the
monitored object may do more frequent reporting to
the Coordinator.

3 MESSAGE ANALYSIS

As we stated in the introduction, today’s most
widely used messaging protocols provide very little
support to the user in terms of message addressing,
message management, and message prioritization.

In the following discussion we present a simple,
yet effective way of annotating messages with
machine readable information to facilitate computer-
supported collaboration using basic messaging
technologies. The tags which are embedded in
messages are specified in XML and can therefore
even be considered to be human-readable, even
though this factor did not play an important role in
the design.

The information contained in these tags may be
used at two stages:

 Ongoing collaborations: Applications include
semi-automatic message addressing and
message management, for example, ordering
of messages by activity, archiving of
messages relating to completed tasks, and
message prioritization.

 Post-collaboration: Tags allow for message
archiving, and improve message analysis
opportunities, possibly as far as extracting
patterns and workflow information.

ICEIS 2007 - International Conference on Enterprise Information Systems

86

Annotations should allow the mapping of messages
to an activity context, which in turn may relate to a
task, a project, and thereby a team. Consider a
hierarchically organized project as depicted in
Figure 2.

Figure 2: Granular levels of detail in project topology.

As displayed by Figure 2, the root of the hierarchical
tree is the Project. It provides the container for
logical workpackages and furthermore actual tasks
which are being executed by team members to
contribute to collaborative activities. Workpackages
and tasks include properties such as start time, end
time, deadlines and milestones, expected duration,
outcome (e.g., artifacts), and resources. To work
effectively in teams, coordination of team members
and progress tracking is required. Measures at
different levels of detail optimize collaboration and
minimize risks that may arise. For example, at level
2 in Figure 2 we measure task progress, deviations,
and possibly identify deadlocks.

Our work in the area of message based systems
aims at structuring ad-hoc collaboration by applying
a flexible topology to manage information, which
allows users to create projects, to associate a number
of tasks to projects, to define a responsible person or
leader for a particular task, to assign members or
contributors to tasks, and to associate a set of
artifacts to tasks.

Exemplary messages relating to information
management, including XML notation, are “create
project” <create-project />, “create task“
<create-task />, “update status“ <update-
status><task-id /></update-status>,
“request approval“ <request-approval><task-
id /><artifact-id /></ request-
approval>. Read-only requests include, for
example, “query status“ <query-status><task-
id /></query-status>.

In the following subsections we elaborate on
collaboration and communication (or the protocol)
patterns and define an XML based method to
coordinate collaboration in ad-hoc teams that
communicate in peer-to-peer mode.

3.1 Communication Patterns

A communication pattern describes the structured
and periodic exchange of messages. The sequence
diagram in Figure 3 shows a simple “create task”
pattern.

Figure 3: Create new task.

The Supervisor assigns a new work item to
Participant I, II, and III by sending a “create task”
message (messages, in short m, 1-3). Figure 3
depicts the case where Participant I holds the task
leader role. Therefore, Participant I accepts and
confirms the assignment by responding with “Ok”.
Finally, the Supervisor acknowledges that “create
task” was successful (“Ack” to each Participant, m
5-7). As a result of this interaction, a new task (i.e.,
task named T1.1 with logical association to
workpackages WP1) is created, assigned, and saved
to the persistent store (e.g., XML data saved in the
local file system – no central database server is
required).

A task typically produces some output in the
form of artifacts such as documents or reports.
These artifacts are associated to or referenced by a
particular task. In our example the task leader,
Participant I, coordinates the work among
contributors (Participant II and III). A final approval
or review, however, may be required by the
Supervisor. Figure 4 illustrates an approval pattern.
Participant I sends a “request approval” message,
containing the “relates to” element that refers to
specific activities or tasks, in our example T1.1
scoped by WP1, to the Supervisor (m 1). The
“relates to” element helps us to inspect the context
of the message and to associate messages to
activities and tasks. Additionally, we can determine
the causal dependencies between messages and
organize them in a structured way. For example,
messages relating to a specific task or workpackage
can be represented in form of a message tree.

PATTERN-BASED COLLABORATION IN AD-HOC TEAMS THROUGH MESSAGE ANNOTATION

87

Figure 4: Request approval from Monitor.

The Supervisor approves T1.1, thereby
authorizing associated or relevant artifacts, by
returning “Ok” (m 2). Please note, the semantic
meaning of “Ok” in this context is to confirm the
request – “request approval”, which may in fact
contain an “accept” or “reject”. For simplicity we
abbreviated the approval message as “Ok”, however,
it should be seen as “Ok (Relates to WP1::T1.1)”.

In Figure 4, we assume that the approval was
only sent to Participant I as a “private” message.
Upon receiving the approval, Participant I
distributes an “update status” message (m 3-4),
which can be regarded as a command or delegate to
receive updates. In other words, it can be seen as an
invalidate-status command (by sending “update
status”), which results in “request status” messages
to be sent (m 5-6).

The approval pattern in our example is denoted
by following properties:

 The “request approval” message is sent by the
leading participant (task leader).

 Approval is given by the supervising Monitor.
 Final status information (e.g., status of

WP1::T1.1) has to be obtained from an
authorized entity, in our case the Supervisor.

Following the approval pattern, Participant II and III
query the Supervisor for updated status information
(m 5-6). The Supervisor, in turn, notifies all
Participants regarding T1.1 updates (m 7-9).

4 INTERACTIONS THROUGH
EMAIL

Our pattern based approach to coordination
problems in collaboration, specifically in ad-hoc
collaboration, by means of message annotations in
form of embedded XML tags, can be applied to any
message oriented system that has basic features such

as addressing, a text based protocol, and the ability
to store messages. Instant Messaging (IM) and
Email are two prominent examples for such systems
and are widely used in collaboration. Email is the
most extensively used technology in asynchronous
(ad-hoc) collaboration because of its flexibility and
its ability to interoperate with any other email
client/program across organizational boundaries and
company firewalls.

However, flexibility comes at a price. There is a
tradeoff between versatile collaboration and
structured or even rigid collaboration flows
(Dustdar, 2004). We validate our proposed concepts
by applying them to email-based collaboration. In
the next sections we provide a high-level
specification of our message annotation framework.

4.1 Message Annotations

Create New Project: Users have the ability to
create a new project, in order to initiate a new
collaboration, by providing information such as
project name, description, start, end, resources, etc.

User can make this information available (i.e.,
announcement that a new project exists) by sending
a message to a predefined distribution list, similar to
a multicast “invite” message. Whoever is interested
from that list in joining the project creates a
response which relates to the announced project.
The other option is to specify members explicitly by
selecting them from a list.

A fragment of the corresponding XML
representation (XML tag) that is embedded (along
with exemplary data) in an email message:

<create-project>

<id>project123</id>
<name>Class data mining</name>
<begin /><end />
<team>
 <member><name /><email />
 <role />
 </member>
</team

</create-project>

All members receive the message. A client
application discovers the machine processible
information, i.e., XML tag <create-project>, in
the message and prompts for information regarding
the project and whether or not the user wishes to
participate. If the user confirms, a message is being
generated and automatically sent to all other
members. An exemplary confirmation message:

<join-project>

ICEIS 2007 - International Conference on Enterprise Information Systems

88

<project>
<id>project123</id>
</project>
<member><name /><email /><role />
</member>

<join-project>

A new folder can be created automatically in the
users email message repository (logical or physical)
to structure all project related messages and
activities. Upon receiving the incoming message
regarding the addition of a new team member
(message holding tag information <join
project>), project related information that is saved
on the other participants’ clients in a local store is
being updated automatically and reflected in the user
interfaces by means of event notification. From this
point on, the project is saved in a persistent store
and members can associate messages to the project.
Every member has the ability to a) create tasks, b)
update status information, c) request status
information, d) send information and artifacts to
members (however, as opposed to standard email, in
a structured way where embedded artifacts,
resources, etc. correspond to tasks and to an activity
context), and furthermore, which is not further
elaborated in this paper, e) initiate and schedule
meetings, and f) request group decisions (distributed
decision making support).

Create Task: A new task is created by providing
the user with the ability to choose a project from the
local store. Once a project is selected, the user
selects the recipients of the task and may assign
predefined roles to members such as a)
Leader/Owner, b) Member, or c) Monitor.

A message is sent to the respective participants,
holding different roles (Leader and Members) and a
carbon copy (CC) to Monitors, containing:

<create-task>

<name /><desc /><duedate />
<leader /><members /><monitors />

</create-task>
Upon receiving this message, users need to confirm
(e.g., “Do you want to add task T to this project and
accept your role?”). A logical folder for messages
relating to that task is created under the
corresponding project folder.

Update Task Status: Task members can send
messages regarding task progress using “update task
status” messages. The corresponding XML
annotation for “update status” along with
(implementation dependent) possible values:

<update-status><task-id />

<progress>50%</progress> (or “on
time”, “delayed”, “completed”)

</update-status>

As task status updates are received, the persistent
store is updated on each participant’s client.

Request Task Status: The team can exchange and
request task status information messages. This
feature is provided by “query status” that lets users
select from projects or teams and depending on
project selection pick specific tasks. As we show at
a later point in more detail, the message may be
distributed based on roles and collaboration patterns,
for example, by requesting status information from
other peers or by requesting status information only
from authorized entities such as Monitors (e.g.,
Supervisors). An exemplary “query status” message:

<query-status>

<task-id />
<last-update>TimeStamp</last-update>
<confidence>60%</confidence>(or
“low”, “medium”, “high”)

</query-status>

Approval: Our framework provides the ability to
issue a “request approval”, as illustrated in Figure 4,
which relates to a task or an associated artifact. A
message is sent to the person who should give the
approval containing:

<request-approval>

<task-id />
<task-leader />
<progress />(e.g., “completed”)
<artifact-id />

</request-approval>

The corresponding response message would be:
<approval>

<task-id />
<approved /> (e.g., accept, reject,
pending, deferred)
<approved-by />
<reason />

</approval>

An approver may accept or reject a task or the actual
outcome of a task in form of artifacts or set the
approval status to “pending”. Furthermore, it is
possible that the approver delegates the decision to
another entity or Monitor. In this case, a custom
XML tag with an element <relates-to>, that
refers to the delegated approver, may be generated.

PATTERN-BASED COLLABORATION IN AD-HOC TEAMS THROUGH MESSAGE ANNOTATION

89

Retrieve Project Status: The ability to retrieve a
project’s status information is a vital part of our
system. Previous elements such as “create task” or
“update task” enable users to manage information
and messages in a structured way – suitable for
coordinated collaboration (e.g., see “request
approval” use case). Retrieve project status aims at
providing a high level overview of activities and
tasks that are going on in a particular project (e.g.,
as illustrated in the project tree in Figure 2). It
allows the users to get summaries of the overall
status (e.g., management summaries) – at a glance –
and also allows new team members to quickly get
started in an ongoing project (bringing new team
members up to speed by generating custom reports
and project summaries). In particular, it allows the
generation of a report of the current project status,
including team members, tasks and their status.
Summaries can be displayed as simple reports
including history of contributions such as file
changes, and also reports suitable for new team
members by getting all relevant information that
other members have stored on their systems. This
could even include the most recent version of all
artifacts such as files related to the project. An
exemplary XML report could comprise the
following elements:

<project-status>

<project-info /> (e.g., id, name,
workpackages, etc.)
<team-info /> (e.g., active members,
monitors)
<task-info /> (e.g., not yet
started, completed, pending)

<project status>

4.2 Collaboration Use Case

A slightly more complex interaction scenario is
depicted by Figure 5. Participant I updates status
information, related to T1.1 (m 1-2), which in turn
triggers an “update status” initiated by Participant II
(m 3). In this case Participant II is monitored by a
Person-Dependent Monitor. In principle, we
distinguish between monitoring a person and
monitoring a task/activity. Next, we see a protocol
specific pattern that relies on roles or even specific
assignments in the form of tasks. Participant I sends
an “update status” message to his/her Supervisor. A
handshake mechanism in form of “ACK” and “OK”
messages is applied to guarantee delivery of status
information (m 4-6).

As a next sequence in Figure 5 we see “request
status” information. The supervisor pulls status
information regarding T1.1 from the task leader (m
7), i.e., Participant I, asynchronously. In turn, the
leader requests status information from each
participant (m 8-9) to ensure consistency of status
information and provides consolidated information
in form of an “update status” message to the
Supervisor (m 10).

ICEIS 2007 - International Conference on Enterprise Information Systems

90

Figure 5: Updating task information interacting with multiple Monitors.

5 RELATED WORK

In our previous work we have introduced patterns
from the software engineering domain, i.e., Proxy,
Broker, and Master/Slave (Gamma et al., 1994), as a
metaphor for human collaboration patterns. (Dustdar
and Hoffman, 2006). These patterns can be utilized
to make collaboration more efficient and also to
establish team awareness. (Gombotz et al., 2006).
As the number of messages sent in collaboration
grows, it becomes increasingly challenging to
process them. Additional socially salient information
may be needed to bring important emails to the
user’s attention. (Neustaedter et al., 2005), (Petrie,
2006). Data obtained from field studies suggest that
email activities may be categorized in: flow, triage,
task management, archive, and retrieve. (Venolia et
al., 2001). Email archives and traces of
communication and coordination activities can be
utilized to perform post-collaboration analysis and
extract relations in human collaboration. Social
networks can be used to visualize these relations and
dependencies in a graph representation. (van der
Aalst et al., 2005).

6 CONCLUSIONS

We presented an extensible XML based framework
that allows users to exchange collaborative
messages and information in a structured way.
Annotations in messages can be used to organize
messages (semi-) automatically based on activity
contexts. Reports and summaries can be generated
automatically in order to understand the high level
status of a project or to assist team members that are
joining the team or have been absent for some time
to better understand past activities and current
status. The presented XML tags, which are
embedded in messages, can be used for post
processing and message analysis to identify and
extract patterns and possibly workflow information.

Our pattern based collaboration framework is
fully distributed and does not rely on any central
server. However, if teams become large and
collaboration lasts for a long period of time, a server
that saves XML annotations and coordinates
activities based on patterns may be employed.
Although presented in the context of email, methods
and principles of our framework may be applied to
any messaging-based system.

ACKNOWLEDGEMENTS

Part of this work was supported by the EU STREP
Project inContext (FP6-034718).

REFERENCES

Van der Aalst, W.M.P., Reijers, H. A., Song, M., 2005.
Discovering Social Networks from Event Logs.
Computer Supported Cooperative Work 14(6), 549-
593.

Dustdar, S., 2004. Caramba - A Process-Aware
Collaboration System Supporting Ad Hoc and
Collaborative Processes in Virtual Teams. Distributed
and Parallel Databases, 15(1), 45-66. Kluwer
Academic Publishers.

Dustdar, S., Hoffmann, T., van der Aalst, W.M.P., 2005.
Mining of ad-hoc business processes with TeamLog.
Data and Knowledge Engineering, 55(2), 129-158,
Elsevier.

Dustdar, S., Hoffmann, T., 2006. Interaction Pattern
Detection in Process Oriented Information Systems.
Data and Knowledge Engineering. Elsevier.

Gamma, E., Helm, R., Johnson, R., Vlissides, J., 1994.
Design Patterns – Elements of Reusable Object-
Oriented Software. Addison-Wesley.

Gombotz, R., Schall, D., Dorn, C., Dustdar, S., 2006.
Relevance-Based Context Sharing through Interaction
Patterns. The 2nd International Conference on
Collaborative Computing. IEEE Press.

Neustaedter C., Bernheim Brush A.J., Smith, M. A., 2005.
Beyond "From" and "Received": Exploring the
Dynamics of Email Triage. CHI 2005.

Petrie, C., 2006. Semantic Attention Management. IEEE
Internet Computing, 10(5), 93-96, Sept/Oct, 2006.

Schümmer, T., 2005. A Pattern Approach for End-User
Centered Development Groupware Development.
EUL Verlag.

Venolia, G.D., Dabbish, L., Cadiz JJ, Gupta A., 2001.
Supporting Email Workflow. MSR-TR-2001-88.

PATTERN-BASED COLLABORATION IN AD-HOC TEAMS THROUGH MESSAGE ANNOTATION

91

