
IMPLEMENTING PRIORITIZED REASONING IN LOGIC
PROGRAMMING

Luciano Caroprese, Irina Trubitsyna and Ester Zumpano
DEIS, University of Calabria, 87030 Rende, Italy

Keywords: Answer Set Optimization, Choice Optimization, Prioritized Logic Programming.

Abstract: Prioritized reasoning is an important extension of logic programming and is a powerful tool for expressing
desiderata on the program solutions in order to establish the best ones. This paper discusses the implemen-
tation of the case of preference relation among atoms and introduces a system, called CHOPPER, reali-
zing choice optimization recently proposed in (Caroprese et al., 2007). CHOPPER supports the ASOCh and
ASOFCh semantics based on the concept of “choice”, as a set of preference rules describing common choice
options in different contexts, and the ASO semantics (Brewka et al., 2003), which valuates each preference
rule separately. This paper outlines the architecture of the system, discusses aspects of the choice identification
strategies and of the feasibility of choice options. Moreover, the comparison of the proposed approach with
the other implementation approaches proposed in the literature is provided.

1 INTRODUCTION

Prioritized reasoning is an important extension of
logic programming, used in a large variety of AI prob-
lems. The most common form of preference con-
sists in specifying preference conditions among rules
(Brewka and Eiter, 1999; Delgrande et al., 2000; Del-
grande et al., 2003; Gelfond and Son, 1997), whereas,
some other proposals admit the expression of prefe-
rence relations among atoms (Brewka et al., 2003;
Sakama and Inoue, 2000; Wakaki et al., 2003). See
(Delgrande et al., 2004) for a survey on this topic.
This work is a contribution to realizing prioritized rea-
soning in logic programming in the presence of prefe-
rence conditions involving atoms. This topic has been
investigated in (Brewka et al., 2003) and (Sakama and
Inoue, 2000), proposing the ASO and PLP semantics
respectively. The ASO semantics evaluates the degree
of satisfaction of all preference rules to determine the
preferred models and can establish a preference re-
lation between each couple of models directly. On
the contrary, the PLP semantics compares two mo-
dels only on the basis of their common preferences,
and needs to test the transitive property to derive the
non directly visible preference relations; this lies in

a more complex implementation. A generalization of
the ASO semantics which look beyond the each sin-
gle preference rule, by considering preferences as a
tool for choice representation, was recently proposed
in (Caroprese et al., 2007).
The prioritized reasoning based on the choice optimi-
zation is illustrated by the following example.
Example 1 Consider the prioritized program
〈P 1,Φ1〉. P 1 describes the possible menus by means
of three rulesr1, r2 and r3, where⊕ states that
exactly one of the head’s atoms has to be taken in the
model, and three constraintsc1, c2 andc3, i.e. rules
with empty heads satisfied if the body is false (e.g.
c1 states thatbee f andred cannot be simultaneously
present).

r1 : fish⊕beef← c1 :← beef, red

r2 : red⊕white← c2 :← beef, pie

r3 : pie⊕ice-cream← c3 :← fish, white

ρ1 : white > red← fish

ρ2 : red > white← beef

ρ3 : pie > ice-cream←

P 1 has three stable modelsM1 = {fish,red,pie},
M2 = {fish, red, ice-cream} and M3 = {beef,
white,ice-cream}. The preference rulesρ1 andρ2
specify that (i) the choice of drink (whiteor red) fol-
lows the selection of the main dish (f ish or bee f);

94
Caroprese L., Trubitsyna I. and Zumpano E. (2007).
IMPLEMENTING PRIORITIZED REASONING IN LOGIC PROGRAMMING.
In Proceedings of the Ninth International Conference on Enterprise Information Systems - AIDSS, pages 94-100
DOI: 10.5220/0002353800940100
Copyright c© SciTePress



(ii) white is better thanred in the presence off ish;
(iii) red is better thanwhite in the presence ofbee f;
whereasρ3 denotes thatpie is better thanice-cream.
M1 is better thanM2 as pie is preferred toice-cream
and they have the same choice option of drink.M1
is better thanM3 as they have the second best choice
of the drink (in the presence off ishandbee f respec-
tively), whereas the choice of thedessertis satisfied
better byM1. ThusM1 is a preferred model.
Observe that the ASO semantics, which considers
each preference rule separately, cannot establish the
preference ordering betweenM1 andM3 and derives
that bothM1 andM3 are preferred models. In more
details, it derives thatM1 is better that M3 w.r.t. ρ2
andM3 is better that M1 w.r.t. ρ1, thus they cannot be
compared. �

This paper discusses the implementation of choice op-
timization in logic programming and presents a sy-
stem, called CHOPPER, realizing this kind of priori-
tized reasoning.

2 PRELIMINARIES

An Answer Set Optimizationprogram, ASO, is a pair
〈P ,Φ〉, whereP is calledGenerating ProgramandΦ
is calledPreference Program; Φ consists of a finite
set of rules of the formC1 > · · ·> Ck← body, where
bodyis a conjunction of literals, i.e. atoms or negation
of atoms, andCis areboolean combinationsof literals.
Intuitively, a preference ruleρ ∈ Φ above described
introduces a preference order amongC1, ...,Ck: Ci is
preferred toCj , for i < j andi, j ∈ [1..k]. Thus, the set
of preferencesΦ determines a preference ordering on
the answer sets described byP .
Let Φ = {r1, ..., rn} be a preference program andS
be an answer set, thenS induces asatisfaction vector
Vs = [vs(r1), ...,vs(rn)] where: a)vs(r j) = I , if r j is Ir-
relevantto S, i.e. (i) the body ofr j is not satisfied inS
or (ii) the body ofr j is satisfied, but none of theCis is
satisfied inS. b) vs(r j) = min{i | S|= Ci}, otherwise.
The satisfaction vectors are used to compare the ans-
wer sets under the assumption thatI is equal to 1 (i.e.,
vSj (r i) = I is equivalent tovSj (r i) = 1).
Let S1 andS2 be two answer sets, then (i)S1 ≥ S2 if
VS1 ≤VS2, i.e. if vS1(r i) ≤ vS2(r i) for everyi ∈ [1..n];
(ii) S1 > S2 if VS1 < VS2, i.e. if VS1 ≤VS2 and for some
i ∈ [1..n] vS1(r i) < vS2(r i).
A set of literalsS is anpreferred (optimal) modelof
an ASO program〈P ,Φ〉 if Sis an answer set ofP and
there is no answer setS′ of P such thenS′ > S.
Given an ASO program〈P ,Φ〉, its computational
complexity is one level above the complexity of the
generating programP (Brewka et al., 2003).

ASOCh Semantics. The generalization of ASO se-
mantics, which captures the intuition depicted in the
Example 1, is called the ASOCh semantics. Diffe-
rently from the ASO semantics, the ASOCh seman-
tics looks beyond the single preference rules, consi-
dering them as a tool for choice representation: head
atoms correspond to thechoice options, whereas the
body of preference rule specifies thechoice context,
i.e. the decisions which have to precede this choice.
The ASOCh semantics admits only atoms or disjunc-
tion of atoms in the head of preference rules. IfCi is a
disjunction of atoms, all atoms inCi are equally good
choice options; atoms inCi are preferred to the atoms
in Cj , for i < j and i, j ∈ [1..k]. The evaluation stra-
tegy consists in the identification of choices and in the
comparison of choices instead of single rules in order
to select preferred models.
More specifically, the partition ofΦ into a set of
choices (subset of preference rules), denoted by
Ch(Φ), is performed following thechoice identifica-
tion strategy: two preference rulesρ1 andρ2 define
the same choiceCh, denoted byρ1,ρ2 ∈ Ch, if (i) ρ1
andρ2 have at least one common atom in their heads;
and (ii)∃ρ3 such thatρ1,ρ3 ∈ Ch andρ3,ρ2 ∈ Ch.
The ASOCh semantics presumes that prioritized pro-
grams arewell-formed, i.e. each set of preference
rulesρ1, ...,ρk defining a choice is specified over al-
ternative contexts. This hypothesis ensures that in
each modelM at most one of the different contexts
of a choice is satisfied, i.e.∀ modelM, ∀ Ch, there is
at most one preference ruleρ ∈ Ch, denoted asactive
in M, such thatbody(ρ) is satisfied inM.
After constructing the set of choicesCh(Φ), the pre-
ferred stable models of〈P ,Φ〉 are computed by as-
sociating to each modelM of P a satisfaction vec-
tor reporting the degree of satisfaction of each choice
Ch∈ Φ. The evaluation strategy of ASOCh semantics
is illustrated by the following example.

Example 2 Consider the prioritized program
〈P 1,Φ1〉 reported in Example 1. The preference
rules{ρ1,ρ2} ∈ Φ1, having common atoms in their
heads, define the same choice, sayChdr, whereas
the last preference ruleρ3 defines another choice,
say Chd. Consequently, the set of preference rules
{ρ1,ρ2,ρ3} ∈ Φ1 is partitioned into two different
choices:Chdr = {ρ1,ρ2} andChd={ρ3} that models
the choice of drink and dessert respectively. The
choice satisfaction vectors areVM1= [2,1], VM2= [2,2],
VM3= [2,2], consequently,M1 is the preferred model
owing to the dessert choice. Note that ASO semantics
gives VM1= [2, I ,1], VM2= [2, I ,2], VM3= [I ,2,2] and
returns M1 and M3 as preferred models. It does
not admit the comparison ofM1 and M3 owing to
opposite satisfaction degrees ofρ1 andρ2. �

IMPLEMENTING PRIORITIZED REASONING IN LOGIC PROGRAMMING

95



Given a prioritized program〈P ,Φ〉, the ASOCh se-
mantics coincides with the ASO semantics if
6∃ρ1,ρ2 ∈Φ having at least one common atom in their
heads.
The computational complexity of ASOCh semantics is
not increased w.r.t. the ASO semantics. In fact, the
choice identification can be done in polynomial time;
while given a modelM the evaluation of its choice
satisfaction vectorVM can be performed by (i) iden-
tifying the active rule for each choice, which can be
done in polynomial time; and (ii) establishing the sa-
tisfaction degrees of the active rules as in the case of
ASO semantics.

ASOFCh Semantics. Given a choiceCh and a mo-
del M, the ASOCh semantics evaluatesM on the ba-
sis of the selected option in the active preference rule
ρ ∈ Ch. Observe that the head atoms ofρ describe
the possible options ofCh and the preference among
them, without taken into account theirfeasibility, i.e.
the really possibility of selecting these options du-
ring the choice. This property depends on the con-
straints present in logic program and is determined by
thechoice contextin a given model, i.e. by the set of
atoms whose selection precede this choice. An alter-
native to the ASOCh semantics evaluating the choices
on the basis on their really possible options is called
ASOFCh semantics.
Example 3 Consider the prioritized program
〈P 3,Φ3〉, describing different menus and the
preferences among drinks and desserts:
r1 : fish⊕beef← c1 :← beef, pie

r2 : red⊕white⊕beer← c2 :← fish, ice-cream
r3 : pie⊕ice-cream←
ρ1 : white > red > beer← fish

ρ2 : red∨beer > white← beef

ρ3 : pie > ice-cream← beer

The generating programP 3 has six stable models:
M1 = {fish,white,pie}, M2 = {fish,red,pie},
M3 = {fish,beer,pie}, M4 = {beef,white, ice-
cream}, M5 = {beef,red,ice-cream} and M6 =
{beef,beer, ice-cream}. Φ3 defines the set of
choicesCh= {Chdr, Chd}, whereChdr = {ρ1,ρ2} and
Chd={ρ3} describe the choices of drinks and desserts
respectively.
In order to establish the set of preferred solutions
the ASOCh semantics constructs the choice satisfac-
tion vector for each model:VM1= [1, I ], VM2= [2, I ],
VM3= [3,1], VM4= [2, I ], VM5= [1, I ], VM6= [1,2] and
obtainM1 andM5 as a result. The ASOFCh semantics
takes into account the feasibility of choice options and
substitutesVM6 = [1,2] byV ′M6 = [1,1] following the in-
tuition that its option of the dessert choice (ice-cream)
is the unique (and, consequently, best) possible op-
tion. ThusM6 is also a preferred model. �

The implementation of the ASOFCh semantics re-
quires the test of the feasibility of choice options,
which can be performed in a polynomial time. Thus,
the computational complexity of ASOFCh semantics is
not increased w.r.t. the ASOCh semantics (Caroprese
et al., 2007).

3 THE CHOPPER SYSTEM

CHOPPER (CHoice OPtimizer for PrioritizEd
Reasoning) is an answer set optimization system rea-
lizing prioritized reasoning based on the choice eva-
luation.
The system prototype has been developed on top
of the well-known DLV prover (Leone et al., 2002)
by using Java 2 Platform. In particular, the ans-
wer set evaluation is performed with the DLV sy-
stem, whereas the prioritized reasoning and the user
interface are realized by means of personalized java
procedures. We point out that besides DVL several
other deductive systems based on stable model se-
mantics have been proposed in the literature (Smod-
els, DeRes) (Cholewinski et al., 1996; Syrjanen and
Niemela, 2001). The choice of DLV is orthogonal
w.r.t. the development of the prototype, since CHOP-
PER can exploit any other deductive systems propo-
sed in the literature.

Using of CHOPPER. CHOPPER receives in in-
put the prioritized program and the specification of
the semantics to be applied and extracts and returns
the preferred stable models as a result. The system
can be used by means of aUser Interface-UI - which
allows to specify (i) the prioritized program -〈P ,Φ〉,
(ii) the semantics -CS - chosen among the semantics
discussed in the paper and allows to visualize the ob-
tained result, i.e. the set of preferred stable models -
PSM .
The running of CHOPPER for the program〈P 3,Φ3〉
under the ASOFCh semantics is provided in Figure 1.
In more details, the prioritized program is provided
to the system by means of two different textual files,
written following the DLV syntax, containing the ge-
nerating program and the preference program, respec-
tively. Note that in the preference program the system
admits the symbol “>” for expressing the preference
order among choice options.
CHOPPER also offers the possibility of comparing
two different semantics by evidencing the set of mo-
dels common to both the semantics. The result of
comparison of ASOCh and ASOFCh for the program
〈P 3,Φ3〉 is provided in Figure 2. The symbol “∗”

ICEIS 2007 - International Conference on Enterprise Information Systems

96



Figure 1: TheUI of CHOPPER.

marks the first model provided by the ASOFCh seman-
tics and states that this model is not provided by the
ASOCh semantics.

Figure 2: Comparison result.

CHOPPER Architecture. The overall architec-
ture of the CHOPPER prototype is reported in Fi-
gure 3. The core of the system consists in two main
blocks: theAnalyzer Blockand theEvaluator Block
described below.

The Analyzer Blockis constituted by two different
modules: theP −analyzerand theΦ−analyzer.

• The Φ-analyzer takes in input the set of prefe-
rence rulesΦ and the chosen semanticsCS , and
computesCh(Φ), i.e. the partition ofΦ into the
set of choices by following the choice identifica-
tion strategy.

• The P -analyzerreceives in input the generating
program P and additional information gained
from Φ-analyzer, and invokes the DLV prover
(Leone et al., 2002) in order to obtain the stable
models of the programP , SM (P ).

• As an additional task, in the case of the ASOFCh

"MÎSM(P), VM

F-testerV-constructor

Examiner

P Ö,CS

SM(P) Ch(Ö), CS G(Ö)

AuxRules

PSM

Analyzer Block

Evaluator Block

User Interface

P-analyzer

< P, Ö > PSM

Ö-analyzer

CS

IC(P)

Figure 3: The architecture of CHOPPER.

semantics, theΦ-analyzerestablishes the prece-
dence relation among choices, while theP -
analyzer extracts the set of constraints ofP ,
IC(P ), necessary for testing the feasibility of
choice options.

TheEvaluator Blockis responsible forPSM discove-
ring and is constituted by three modules: theF-tester,
theV-constructorand theExaminer.

• TheF-testeris able to test the feasibility of choice
options.

• The V-constructorreceives in inputSM (P ), CS
and Ch(Φ), and constructs the (feasible) choice
satisfaction vectorVM for each stable modelM ∈
SM (P ).

• The Examinermodule, performs the comparison
of the choice satisfaction vectors so that establish-
ing the set of preferred stable modelsPSM . The
result is provided to theUI responsible of user’s
communication.

4 IMPLEMENTATION

In the following we detail the implementation of the
main modules constituting theAnalyzer Blockand the
Evaluator Block.

4.1 Φ-analyzer

TheΦ-analyzer examines the structure of preference
rules in order to establish the partition ofΦ into the set
of choicesCh(Φ) and to determine the order among
choices. Moreover, it produces the set of auxiliary

IMPLEMENTING PRIORITIZED REASONING IN LOGIC PROGRAMMING

97



rules necessary to simplify the construction of the
choice satisfaction vector without increasing the com-
putational complexity ofP .

Choice identification. The choice identification
process performed by theΦ− analyzerdepends on
the selected semantics and is based on the choice
identification strategy. In the case of ASO semantics
each rule is associated with a different choice. In the
case of ASOCh or ASOFCh semantics the rules, having
at least one common atom in their heads, are assigned
to the same choice. The algorithm, performing this
task, is presented in Figure 4. It takes in input a set of
preference rulesΦ and returns the partition ofΦ into
the set of choicesCh(Φ).

Algorithm 1 Choice Identification
Input: A set of preference rules:Φ;
Output: A set of choices:Ch(Φ);
begin

Ch(Φ) = {};
while (Φ is not empty) {

ρ = extractFirstElement(Φ);
Ch = {ρ}; Φ = Φ−{ρ};
update=true;
while (update==true ) {

update=false;
for each ρ′ ∈Φ

for each ρ ∈ Ch
if (sameChoice(ρ,ρ′)) {

Φ = Φ−{ρ′};Ch = Ch+{ρ′};
update= true; }

} Ch(Φ) =Ch(Φ)+Ch;
} return Ch(Φ);

end.

Figure 4: Choice Identification Algorithm.

At each step of the external iteration process the al-
gorithm selects the first preference ruleρ from Φ
and identifies and extracts all preference rules fromΦ
defining the same choice ofρ, calledCh. The function
sameChoicereceives in input two preference rulesρ
andρ′ and returnstrue if they have at least one com-
mon atom in their heads. In the positive case,ρ′ is
added toCh. The transitive property is supported by
the nestedwhile-block, which ensures that all prefe-
rence rules defining the same choice are considered
together. For the sake of simplicity of presentation,
the optimization details, regarding the implementa-
tion of the transitive property are not reported in the
above algorithm.

Choice ordering. The relationship among choices
can be established by means of theChoice depen-

dency graphdescribed below.

Definition 1 Choice dependency graph:Given a
set of choicesΦ = {Ch1, ..., Chn}, its dependency
graph G(Φ) is an oriented graph〈N,E〉, whereN
denotes the set of nodes associated to choices, i.e
N = {Ch1, ..., Chn}, andE denotes the set of edges,
E = {e(Chi,Chj)|∃ρ2 ∈ Chj,ρ1 ∈ Chi and ∃ atomA,

s.t. A ∈ body(ρ2)∧ A ∈ head(ρ1)}. �

The implementation ofG(Φ) is really simple as its
nodes correspond to the choices, whereas the pre-
sence of the edgee(Chi,Chj) can be tested by consi-
dering the choice options ofChi and the positive body
atoms, present in eachρ ∈ Chj.
Definition 2 Given a set of choicesΦ = {Ch1, ...,
Chn} and itsdependency graph G(Φ), we say that the
choiceChi precedesChj, denoted byChi ≺ Chj, if
there is a path from the vertexChi to the vertexChj,
whereas there is no path fromChj to Chi. �

Previous definition allows the computation of the set
of choices precedent to a choiceCh: Ch′ precedesCh
if there is a path from the vertexCh′ to the vertexCh;
moreover, it takes into account the intuition that we
cannot establish a precedence relation between two
choices if they are involved in a cycle.

Figure 5: Choice Dependency Graph.

Example 4 Consider the Choice dependency graph
presented in Figure 5. There are two nodesCh2
and Ch3 involved in a cycle, thus we cannot estab-
lish the precedence relation between the correspon-
ding choices. On the other hand, we can deduce, that
Ch1 ≺ Ch2, Ch1 ≺ Ch3, Ch1 ≺ Ch4, Ch2 ≺ Ch4 and
Ch3 ≺ Ch4. �

4.2 V-constructor and F-tester

TheV-constructorand theF-testermodules collabo-
rate in order to construct the choice satisfaction vector
for each stable model of the generating program.

Choice Satisfaction Vector. The V-constructorre-
ceives in inputSM (P ), CS and Ch(Φ), and con-
structs the choice satisfaction vectorVM for each sta-

ICEIS 2007 - International Conference on Enterprise Information Systems

98



ble modelM ∈ SM (P ) following the chosen seman-
tics CS . More specifically, given a modelM, VM =
[(v(Ch1), ...,v(Chn)] reports the satisfaction degree of
each choiceChi ∈ Ch(Φ).
In the case of ASOCh semantics each choiceChi is de-
scribed by the set of preference rules, but at most one
of them is active inM andv(Chi) reports its satis-
faction degree. The cases than (i) no preference rule
is active inM or (ii) there exists an active rule, but
no choice option described by it is present inM, are
considered as the best cases, i.e.v(Chi) = 1.
In the case of the ASO semantics each choice is de-
scribed by a unique preference rule, thusVM coin-
cides with the satisfaction vector proposed in (Brewka
et al., 2003).
If the ASOFCh is chosen,VM has to be constructed by
taking into account the feasibility of choice options.
Consider, for instance, the choiceChi and suppose
the choice optiond-th to be present inM, whereas
k options preceding it are not feasible inM, then
v(Chi) = d−k. TheV-Constructorperforms this task
by interacting with theF-testermodule, able to ana-
lyze the feasibility of choice options.

Feasibility Testing. The F-tester module is in
charge of verifying the feasibility of the choice op-
tions present in a preference rules. The goodness of a
model depends on the degree of satisfaction of a set of
preference rules; anyhow, the measure of the degree
of satisfaction of a preference rule, sayρ, active w.r.t.
a modelM should be evaluated by only considering
the set of choice options feasible inM. In order to
better depict this intuition, let’s examine the program
〈P 3,Φ3〉 and the modelM6 reported in Example 3.ρ3
is active inM6 and as the choice ofpie is not feasible
in M6, ice-creambecomes the best choice option as it
is the only feasible one.
In order to capture this behavior theF-testermodule
computes the context of a choiceCh in a modelM as
the subset of atoms inM whose selection precedesCh.
Intuitively, this subset of atoms can be individuated (i)
by analyzing the choice dependency graph in order
to establish the set of choices precedingCh, (ii) by
identifying the atoms selected during these choices,
or whose selection precede these choices.
More formally, given a set of choicesCh(Φ), the con-
text of a choiceCh w.r.t. a modelM, denoted by
cntxM(Ch), is the conjunction

V
ρ′∈Ω(Ch,M)(body(ρ′)∧

best head(ρ′))
V

body(ρ), whereΩ(Ch,M) = {ρ′ | ∃ Ch′ ∈
Φ s.t. Ch′ ≺ Ch∧ρ′ ∈ Ch′ ∧M |= body(ρ′)} , ρ ∈ Ch is s.t.
M |= body(ρ) andbest head(ρ′) is the best choice option
of ρ′ belonging toM.

Example 5 Consider the prioritized program
〈P 3,Φ3〉 from the Example 3. Notice thatbeer is

the option of the drink choice and that each model
M containing beer performs this choice following
either the preference ruleρ1 or ρ2, i.e. beforebeer,
M has selected eitherf ishor bee f. Let’s consider the
modelM6: ρ3 is active inM6 as it containsbeer, and
beer follows the selection ofbee f. Thus the choice
described byρ3 works in the presence (context) of
{bee f,beer}. �

Given a modelM and a choiceCh, the module is
therefore in charge of testing the feasibility of the op-
tions expressed inCh by considering the constraints
of the generating program and the context ofCh in M.

Definition 3 Feasibility of choice options:Given a
prioritized program〈P ,Φ〉 defining the set of choices,
a stable modelM of P , a choiceCh ∈ Ch(Φ) and a
preference ruleρ∈ Ch, thenAi ∈ head(ρ) is afeasible
choice option w.r.t.M iff Ai∧cntxM(Ch) |= IC(P ) and
is unfeasibleotherwise. �

The test of the feasibility is performed by theF-tester
module by constructing for each tested choice option
a logic program which is satisfied if the tested option
is feasible and fails otherwise. This program contains
(i) the atoms of the choice context and a tested atom
(choice option) as facts and (ii) the set of constraint
IC(P ) of the generating programP . TheF-testerin-
vokes the DLV prover in order to solve this program
and if the program does not have stable models de-
duces that the tested option is unfeasible, or deduces
that it is feasible otherwise.

5 OTHER APPROACHES

The computation of preferred models proposed in
(Brewka et al., 2003) and (Wakaki et al., 2003) for
ASO semantics and PLP semantics respectively is
based on the use of atester program1. In more de-
tails, given a prioritized logic program〈P ,Φ〉, the
tester program takes in input a candidate solutionS
of P and looks for the other solutions ofP (strictly)
preferred w.r.t. S. This latter task is performed by
generating the solutions ofP and by comparing them
with S.
The ASO semantics permits a direct comparison of
two solutions, thus the tester program can be used as
follows. The computation starts with an arbitrary so-
lution Sof P . If the tester fails,S is an optimal solu-
tion and the computational process stops. Otherwise,
a strictly better solutionS1 is discovered and the tester

1A similar technique was also implemented in (Jan-
hunen et al., 2000; Brewka, 2002; Sakama and Inoue,
2000).

IMPLEMENTING PRIORITIZED REASONING IN LOGIC PROGRAMMING

99



is run with S1 as input. This process continues until
an optimal solution is reached.
On the contrary,PLP semantics introduces the tran-
sitive property of preference relation, thus admits the
preference relation between two solutions which are
not directly comparable. Consequently, in this case
two-step procedure is needed: in the first step all
the direct preference relations among solutions have
to be established; then the transitive relations can be
discovered and the final conclusion can be derived.
Wakaki et. al in (Wakaki et al., 2003) implement the
direct comparisons by testing each answer set ofP
with a tester program; and then create an auxiliary
logic program which extracts all preferred solutions
on the basis of the preference relations generated at
the previous step and those discovered by using the
transitive property.

In the general case, both the approaches, previously
described, need to perform more calls to the tester
program which is in charge of computing the set of
solution ofP . The approach adopted in CHOPPER
aims to avoid the redundant computation of the set of
solution ofP , performed during each call to the tester
program. CHOPPER uses once the logic prover to
find the set of solutions of the problem, and realizes
the prioritized reasoning by means of personalized
comparison procedures.

6 CONCLUSION

In this paper the implementation of prioritized rea-
soning in logic programming has been discussed.
In particular, the case of preference relation among
atoms has been investigated and a system, called
CHOPPER, has been described. This system realizes
choice optimization in logic programming by imple-
menting the ASOCh and ASOFCh semantics recently
proposed in (Caroprese et al., 2007), and supports the
ASO semantics (Brewka et al., 2003). In this paper
the architecture of the system has been presented and
aspects of the choice identification strategies and of
the feasibility of choice options has been discussed.
Moreover, the comparison of the proposed approach
with the other implementation approaches proposed
in the literature has been provided.

REFERENCES

Brewka, G. (2002). Logic programming with ordered dis-
junction. In Proc. of the 18th Nat. Conf. on Artifi-
cial Intelligence (AAAI/IAAA), pages 100–105. AAAI
Press.

Brewka, G. and Eiter, T. (1999). Preferred answer sets
for extended logic programs.Artificial Intelligence,
109(1-2):297–356.

Brewka, G., Niemela, I., and Truszczynski, M. (2003). Ans-
wer set optimization. InProc. of the 18th Int. Joint
Conf. on Artificial Intelligence, pages 867–872. Mor-
gan Kaufmann.

Caroprese, L., Trubitsyna, I., and Zumpano, E. (2007).
A framework for prioritized reasoning based on the
choice evaluation. InProc. of the 22nd Annual ACM
Symposium on Applied Computing.

Cholewinski, P., Marek, V. W., and Truszczynski, M.
(1996). Default reasoning system deres. InProc.
of the 5th Int. Conf. KR’97, pages 518–528. Morgan
Kaufmann.

Delgrande, J. P., Schaub, T., and Tompits, H. (2000). Logic
programs with compiled preferences. InProc. of the
14th Eur. Conf. on Artificial Intelligence, pages 464–
468. IOS Press.

Delgrande, J. P., Schaub, T., and Tompits, H. (2003). A
framework for compiling preferences in logic pro-
grams.TPLP, 3(2):129–187.

Delgrande, J. P., Schaub, T., Tompits, H., and K., W. (2004).
A classification and survey of preference handling ap-
proaches in nonmonotonic reasoning.Computational
Intelligence, 20(2):308–334.

Gelfond, M. and Son, T. (1997). Reasoning with prioritized
defaults. InProc. of the 3d Int. Workshop LPKR’97,
pages 164–223. Springer.

Janhunen, T., Niemela, I., Simons, P., and You, J.-H. (2000).
Unfolding partiality and disjunctions in stable model
semantics. InProc. of the 7th Int. Conf. KR’00, pages
411–419. Morgan Kaufmann.

Leone, N., Pfeifer, G., Faber, W., Calimeri, F., Dell’Armi,
T., Eiter, T., Gottlob, G., Ianni, G., Ielpa, G., Koch,
K., Perri, S., and Polleres, A. (2002). The dlv sy-
stem. InProc. of Eur. Conf. JELIA’02, pages 537–540.
Springer.

Sakama, C. and Inoue, K. (2000). Priorized logic program-
ming and its application to commonsense reasoning.
Artificial Intelligence, 123:185–222.

Syrjanen, T. and Niemela, I. (2001). The smodels system.
In Proc. of the 6th Int. Conf. LPNMR’01, pages 434–
438. Springer.

Wakaki, T., Inoue, K. nd Sakama, C., and Nitta, K. (2003).
Computing preferred answer sets in answer set prog-
ramming. InProc. of the 10th Int. Conf. LPAR’03,
pages 259–273. Springer.

ICEIS 2007 - International Conference on Enterprise Information Systems

100


