Komorowski, J.; Pawlak, Z.; Polkowski, L. & Skowron,
A. (1999), Rough Sets: A Tutorial, in S. K. Pal & A.
Skowron, ed., 'Rough-Fuzzy Hybridization: A New
Trend in Decision Making', Springer-Verlag,
Singapore, 3-98.
Lingras, P. & West, C. (2004), 'Interval Set Clustering of
Web Users with Rough K-Means', Journal of
Intelligent Information Systems 23, 5-16.
Mitra, S. (2004), 'An Evolutionary Rough Partitive
Clustering', Pattern Recognition Letters 25, 1439-
1449.
Murata, T. (1989), 'Petri Nets: Properties, Analysis and
Applications', Proceedings of the IEEE 77(4), 541-
580.
O'Hagan, T. (2005), Chameleon Workflow Demos,
University of Queensland website,
http://www.itee.uq.edu.au/~tohagan/Chameleon/
Pawlak, Z. (1982), 'Rough Sets', International Journal of
Information and Computer Sciences 11, 145-172.
Pawlak, Z. (1992), Rough Sets: Theoretical Aspects of
Reasoning about Data, Kluwer Academic Publishers,
Boston, MA, USA.
Peters, G. (2006), 'Some Comments on Rough Clustering',
Pattern Recognition 39(8), 1481-1491.
Peters, J.F.; Skowron, A.; Suraj, Z. & Ramanna, S. (1999),
Guarded transitions in rough Petri nets, in 'Proceed.
EUFIT99 - 7th European Congress on Intelligent
Systems & Soft Computing'.
Peters, J.F.; Skowron, A.; Suraj, Z.; Ramanna, S. &
Paryzek, A. (1998), Modeling real-time decision-
making systems with rough fuzzy Petri nets, in
'Proceed. EUFIT98 - 6th European Congress on
Intelligent Techniques & Soft Computing', pp. 985-
989.
Peters, J.F.; Ramanna, S.; Suraj, Z. & Borkowski, M.
(2003), Rough Neurons: Petri Net Models and
Applications., in A. Skowron S.K. Pal, L. Polkowski,
ed.,' Rough-Neuro Computing', 472-491.
Peters, J.F.; Skowron, A.; Suray, Z. & Ramanna, S.
(2000), Sensor and Filter Models with Rough Petri
Nets, in H.D. Burkhard; L. Czaja; A. Skowron & P.
Starke, ed., 'Proceedings of the Workhop on
Concurrency, Specification and Programming',
Humboldt-University, Berlin, 203-211.
Polkowski, L.; Skowron, A. & Komorowski, J. (1996),
Approximate case-based reasoning: A rough
mereological approach, in 'Proceed. 4-th German
Workshop on Case Based Reasoning, System
Developments and Evaluation', pp. 144-151.
Polkowski, L. (2003), Rough Sets, Physica-Verlag,
Heidelberg, Germany.
Scheer, A. (2000), ARIS - Business Process Modeling,
Springer-Verlag, Berlin, Germany.
Skowron, A. & Swiniarski, R. (2001), Rough Sets in
Pattern Recognition, in Pal, S.K. and Pal, A., Pattern
Recognition: From Classical to Modern Approaches,
World Scientific, Singapore, pp. 385-425.
Slowinski, R. (1993), Rough set learning of preferential
attitude in multi-criteria decision making, in J.
Komorowski & Z. Ras, ed., 'Methodologies for
Intelligent Systems', Springer-Verlag, Berlin,
Germany, pp. 642-651.
Suraj, Z. (2000), Rough set methods for the synthesis and
analysis of concurrent processes, in Polkowski, L. and
Tsumoto, S. and Lin, T., Rough set methods and
applications: new developments in knowledge
discovery in information systems, Physica-Verlag,
Heidelberg, Germany, pp. 379-488.
van der Aalst, W. & van Hee, K. (2002), Workflow
Management - Models, Methods, and Systems, MIT
Press, Cambridge, MA, USA.
van der Aalst, W. (1999), 'Formalization and Verification
of Event-driven Process Chains', Information and
Software Technology 41(10), 639-650.
van Hee, K.; Oanea, O. & Sidorova, N. (2005), Colored
Petri Nets to Verify Extended Event-Driven Process
Chains, in ' Proceed. CoopIS 2005 - 13th International
Conference on Cooperative Information Systems', pp.
183-201.
Yao, Y.; Li, X.; Lin, T. & Liu, Q. (1994), Representation
and Classification of Rough Set Models, in
'Proceedings Third International Workshop on Rough
Sets and Soft Computing', pp. 630-637.
Zadeh, L. (1965), 'Fuzzy Sets', Information and Control 8,
338-353.
Zimmermann, H. (2001), Fuzzy Set Theory and its
Applications, Kluwer Academic Publishers, Boston,
MA, USA.
ICEIS 2007 - International Conference on Enterprise Information Systems
440