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Abstract: Whenever XML is used as format to exchange large amounts of data or even for data streams, the verbose 
behaviour of XML is one of the bottlenecks. While compression of XML data seems to be a way out, it is 
essential for a variety of applications that the compression result can be queried efficiently. Furthermore, for 
efficient path query evaluation, an index is desired, which usually generates an additional data structure. For 
this purpose, we have developed a compression technique that uses structure information found in the DTD 
to perform a structure-preserving compression of XML data and provides a compression of an index that 
allows for efficient search in the compressed data. Our evaluation shows that compression factors which are 
close to gzip are possible, whereas the structural part of XML files can be compressed even better.

1 INTRODUCTION 

1.1 Motivation 

XML is widely used as a data exchange standard and 
DTDs are one of the key concepts to ensure 
correctness of XML data. While the structural 
information contained in XML trees is considered 
being one of the strengths of XML, it has the 
following disadvantages: structure makes XML files 
rather verbose compared to the text values enclosed 
in the structures of an XML file.  

Whenever the structure of an XML document is 
defined by a DTD, we can take advantage of the fact 
that the DTD defines some structure patterns that 
occur repeatedly in the XML document. The key 
idea of our structure preserving compression is to 
compress the verbose structural parts of XML 
documents that are redundant when regarding the 
structure of a given DTD. In order to be able to 
construct an index for path queries, our structure 
preserving data format separates a compressed 
structure index, called kleene size tree (KST) from 
the compressed data values of the XML document.  

Our paper has the following contributions: 
1. From the DTD, we derive a set of grammar 

rules that can be used for the following: to compress 
the structural part of the XML data to a structure 

preserving kleene size tree (KST) and a data format 
called constant XML stream (CXML) to store the 
text constants and attribute values of XML 
documents.  

2. The same grammar rules can be used to 
decompress the generated data structures KST and 
CXML back to the XML data given before.  

3. The kleene size tree (KST) can be used for 
transforming path-oriented search operations on an 
XML document to equivalent queries on the con-
stant XML (CXML) stream.  

4. We have evaluated our approach and show that 
significant compression of the XML structure is 
possible. Our experiments have shown that the size 
of the KST is on average only 3.6% of the size of the 
structure of the original XML file. 

Our approach – which we call DTD subtraction - 
is especially useful, when the structure of the XML 
document is the bottleneck of the data exchange. 
Finally, our approach can be used for extremely 
large XML documents and it supports streaming of 
XML documents.  

DTD subtraction can be summarized as follows. 
We represent each element declaration of a given 
DTD as both a syntax tree and a set of grammar 
rules (Section 2). The set of grammar rules is then 
augmented to an attribute grammar for either 
compression of an XML document to a KST and a 
CXML stream, for decompression of a KST and a 
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CXML stream or for transforming path queries on 
the XML data into queries on CXML data and an 
index generated from the KST (Section 3). Section 4 
outlines how our approach can be extended to 
arbitrary DTDs and to XML streams. Section 5 
summarizes our experimental results, whereas 
Section 6 discusses related works and Section 7 
outlines the summary and conclusions.  

2 TRANSFORMING A DTD INTO 
A SET OF GRAMMAR RULES  

2.1 Element Declarations 

For simplicity of the presentation, we consider 
DTDs containing only element declarations. For 
example, the element declaration  

< !ELEMENT E1  (  E2 , ( E3|E4 )  )*   >  
defines each element E1 to enclose an arbitrary 
number of sequences each of which consists of the 
element E2 followed by either an element E3 or an 
element E4. We call (E2, (E3|E4))* the right hand 
side of the element declaration. This right hand side 
applies the kleene operator (*) to the sequence 
operator (,) which itself is applied to the child 
element E2 of E1 and the choice operator (|) that 
itself is applied to the child elements E3 and E4 of 
E1.  

In comparison, an element declaration  
< !ELEMENT E2  ( #PCDATA  )  >  

defines the element E2 to contain only PCDATA. In 
this case, the right-hand side of the element 
declaration contains only the expression #PCDATA.   

In general, each right hand of an element 
declaration can be regarded as a regular expression 
which combines zero or more child elements or the 
#PCDATA entry or the EMPTY entry by using the 
operators sequence (,), choice (|) or kleene(*). Note 
that the (+) operator found in element declarations 
can always be expressed by using the sequence and 
kleene operators, i.e., we replace (E) + with (E, 
(E*)). Similarly, the option operator (?) can be 
expressed by using choice and EMPTY, i.e., we 
replace (E?) with (E|EMPTY). Furthermore, an 
extension of our approach to attributes is straight 
forward, i.e., a list of attributes defined in an 
ATTLIST declaration for an element E can be 
treated similar to a sequence of child elements of E 
where optional attributes are treated like optional 
elements. In order to keep the following discussion 
simple, we only talk about elements and do not 
explicitly mention attributes.  

We exclude however the ANY operator from 
DTD element declarations because the ANY 

operator does not allow us to infer the type 
information that we need.  

2.2 Representing Element Declarations 
as Syntax Trees  

Grammar rules for compression and XML path 
query translation are generated from the element 
declarations of the DTD. For this purpose, each 
element declaration is parsed and transformed into a 
binary syntax tree consisting of 7 types of element 
declaration nodes. Some node types have a 
parameter. For example, the element declarations 
given in the previous section are represented by the 
syntax trees given in Figure 1:  

         element_decl( E1 )          element_decl( E2 )  
         |             | 
 kleene (N0)       pcdata 

         | 
           sequence (N1) 
            /     \ 

child_element( E2 )    choice (N2) 
           /              \ 
 child_element( E3 )     child_element( E4 )  

Figure 1: Syntax trees of the element declarations given in 
Section 2.1. Unique node IDs (N0, N1, N2) are generated 
for inner nodes.  

In general, there are the following 7 element 
declaration node types which are used in syntax 
trees:  

1. element_decl( Element name ). A node of this 
type is generated for each element defined in an 
element declaration. The name of the defined 
element is passed as a parameter. Each element_decl 
node has exactly one successor node which is the 
root of the sub-tree representing the right hand side 
of the element declaration.  

2. child_element( Element name ). A node of this 
type is generated for each occurrence of an element 
in the right hand side of an element declaration. The 
name of this element is passed as a parameter. Each 
child element definition has no successor nodes in 
the syntax tree.   

3. pcdata. The pcdata node is used whenever the 
right-hand side of an element declaration contains 
the string ‘#PCDATA’. The pcdata node does not 
have a parameter, and it does not have a successor 
node in the syntax tree.  

4. sequence. A node of type sequence is generated 
for each sequence operator (,) occurring in the right 
hand side of an element declaration. A sequence 
node does not have a parameter. Each sequence node 
has two successor nodes representing the two 
arguments of this sequence operator (,) in the 
element declaration. 
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5. choice. A node of type choice is generated for 
each choice operator (|) occurring in the right hand 
side of an element declaration. A choice node does 
not have a parameter. Each choice node has two 
successor nodes representing the two arguments of 
this choice operator (|) in the element declaration.  

6. kleene. A node of type kleene is generated for 
each kleene operator (*) occurring in the right hand 
side of an element declaration. A kleene node does 
not have a parameter. Each kleene node has one 
successor node representing the argument of this 
kleene operator (*) in the element declaration.  

7. empty. A node of type empty is generated for 
each string ‘EMPTY’ occurring in an element 
declaration. Nodes of type empty do neither have a 
parameter nor a successor node in the syntax tree.  

Each element declaration is parsed and translated 
into a syntax tree, each node of which has exactly 
one of the 7 node types described above.  

2.3 Determining a Set of Starting 
Terminal Symbols  

As a final step of parsing an element declaration, we 
collect the set of starting terminal symbols for each 
node except the root node of the element declaration 
syntax tree. These sets of starting terminal symbols 
allow the parser to decide during parsing, which 
grammar rule has to be applied. The set of starting 
terminal symbols (STS) can be computed by the 
following rules: 

STS(child_element(name)) := { name } 
STS(pcdata) := { pcdata } 
STS(empty) := { empty } 
STS(sequence(a,b)):=STS(a), if empty ∉ STS(a) 
STS(sequence(a,b)):=STS(a)∪STS(b),  

if empty ∈ STS(a) 
STS(choice(a,b)) :=  STS(a) ∪ STS(b)  
STS(kleene(a)) :=  { empty } ∪ STS(a)  
For the following presentation in Section 2 and 

Section 3, we assume that the sets of starting 
terminal symbols of two sibling nodes that follow a 
choice node are always disjoint, such that the current 
context node found in the input XML document 
uniquely determines which choice has to be taken. 
This is a legitimate assumption, as the determinism 
of XML content models is a non-normative 
constraint of the XML specification ((XML, 2000), 
Appendix E).  

2.4 Rewriting Element Declaration 
Syntax Trees into Grammar Rules  

For each inner node i occurring in an element 
declaration syntax tree, we generate a unique node 

ID, Ni, and for each node type, we generate its own 
grammar rule set. As there are 7 types of nodes 
occurring in an element declaration syntax tree, we 
get 7 different types of grammar rule sets, i.e., one 
set of grammar rules for each element declaration 
node type. In order to distinguish the rules generated 
for different nodes of the same type, we 
parameterize the rules with node IDs, Ni, associated 
with each node in the element declaration syntax 
tree. A further parameter occurring in the rules 
generated for nodes of the types sequence, choice, or 
kleene is the set of starting terminal symbols 
computed for that node. Finally, the rules for 
element_decl nodes contain the element to be de-
fined as a parameter, and whenever child_element 
nodes occur in the syntax tree as a node referenced 
by a parent node P, the grammar rule defined for P 
contains a ‘child_element’ call with the child 
element found in the element declaration syntax tree 
as a parameter.  

For example, the grammar rule sets generated for 
the syntax trees of Figure 1 are: 

element_decl( E1 )  kleene( N0, {E2} ) .  
kleene( N0, {E2} )  sequence( N1, {E2} ).  
sequence( N1, {E2} )  child_element( E2 )  ,  

choice( N2, {E3,E4} ) .  
choice( N2, {E3,E4} )  child_element( E3 ) .  
choice( N2, {E3,E4} )  child_element( E4 ) .  
 

element_decl( E2 )  pcdata.   
pcdata  .  

3 USING THE GRAMMAR RULE 
SET FOR COMPRESSION AND 
INDEX CREATION 

3.1 Using the Grammar Rule Set for 
Compression 

The goal of our compression algorithm is to generate 
the kleene size tree (KST), i.e., a tree that contains 
only that part of the XML document which is not 
pre-defined by the DTD. The KST can be regarded 
as a compression of the structure of the XML 
document. However, it can also be used to generate 
an index for efficient access to the XML document. 
Each node in the KST stores a value representing a 
concrete XML fragment where the DTD allows for 
several options, i.e., which choice is taken at a 
certain node of the XML document for which a 
choice operator (|) in the DTD allows different 
options, and how many times a child node or a group 
of child nodes is repeated in a certain fragment of 
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the XML document where the DTD uses the kleene 
operator (*) to allow an arbitrary number.  

The grammar rule set can be used for 
compression by augmenting it to an attribute 
grammar, i.e., by adding attributes that perform 
compression as follows. We use the Definite Clause 
Grammar (DCG) rule notation of Prolog (Closkin, 
1997) to describe the implementation of the attribute 
grammar rules, and we use the notation 
“[Input]/[OutputKst]” in order to describe that Input 
has to be read or consumed from the XML input file 
or XML input data stream, and OutputKst has to be 
written to the KST. Furthermore, parenthesis, {.}, 
are used in DCG rules to describe side-effects or 
conditions that have to be true if a DCG rule is 
applied. How each grammar rule is augmented 
depends on the rule head, i.e., on the node type 
represented by the rule.  

Before we describe the general augmentation of 
grammar rules, we start with an example. The rule  

element_decl(E1)  sequence( N1, {E2} ).   
is augmented to  

element_decl(E1)  [E1]/[], sequence(N1,{E2} ).   
The empty pair of brackets, [ ], indicates that 
nothing is written to the KST. Therefore, the 
augmented grammar rule can be read as follows: 
consume an opening E1 element tag from the input, 
output nothing to the KST file and continue with 
applying the sequence grammar rule that matches 
the node ID N1.  
The augmentation technique is the same in the 
general case, i.e., each grammar rule  

element_decl( E )  right hand side .   
is augmented to  

element_decl( E )  [E] / [ ] , right hand side.   
Grammar rules for sequence node types are not 

augmented, i.e., they remain as they are, e.g. 
sequence( N1, {E2} )  child_element( E2 )  ,  

choice( N2, {E3,E4} ).   
or in general they remain: 

sequence( Ni, S )  right hand side. 
Grammar rules for choice node types occur 

whenever the DTD allows two different options. 
Therefore, grammar rules for choice node types are 
augmented with checking which input element is the 
next on the input stream, and they write the choice 
taken, i.e., whether it is the first or the second choice 
that is allowed by the DTD, to the KST. Within the 
example, the grammar rules  

choice( N2, {E3, E4} )  child_element( E3 ) . 
choice( N2, {E3, E4} )  child_element( E4 ) . 

are augmented to the following grammar rules  
choice( N2, {E3, E4 } )  {next tag ∈ {E3}} ,  

[ ] / [1] , child_element( E3 ) . 
choice( N2, {E4, E4} )  {next tag ∉ {E3}} ,  

[ ] / [2] , child_element( E4 ) . 
Within these augmented rules, the output [1] (or 

[2]) written on the KST expresses that the first (or 
second) choice described by the DTD has been 
taken. We write this information to the KST in order 
to be able to reconstruct the original XML data from 
the KST and the CXML file.  

In general, the choice operator may not only 
combine elements, but may combine two 
expressions. Then, each pair of grammar rules for a 
choice operator taking a node ID Ni and two sets 
STS1 and STS2 of starting terminal symbols as 
parameters 

choice(Ni, (STS1∪STS2) )  right hand side 1. 
choice(Ni, (STS1∪STS2) )  right hand side 2. 

is replaced with the following pair of grammar rules: 
choice(Ni, (STS1∪STS2)) {next tag ∈ STS1 } 

[ ] / [ 1 ], right hand side 1. 
choice(Ni, (STS1∪STS2)) {next tag ∉ STS1 } 

[ ] / [ 2 ], right hand side 2. 
child_element calls in a grammar rule simply call 

the element grammar rule for the element given as 
the parameter.  

child_element( E )  element_decl( E ).  
Finally, grammar rules for kleene node types are 

replaced with a set of augmented grammar rules that 
count the arguments taken by a kleene operator 
within the CXML stream. Within the example, the 
grammar rule  

kleene( N0, {E2} )  sequence( N1, {E2} ).  
is replaced with the following grammar rules  

kleene( N0, {E2} )  [ ] / [ Count ] ,  
repeat( N0, {E2} , Count ) .  

repeat( N0, {E2}, Count )  {next tag∈{E2}},  
sequence(N1,{E2}), repeat(N0,{E2}, 
Count1 ) , { Count is Count1+1 }.  

repeat( N0, {E2}, 0 )   { next tag∉{E2} } . 
Here, the repeat rules count how often the argument 
of the kleene operator (*) occurs and the kleene rule 
writes the Count value into the KST 

In general, each given grammar rule for a kleene 
operator taking a node ID Ni and a set S of starting 
terminals as parameters  

kleene( Ni, S )  right hand side .  
is replaced with the following new grammar rules  

kleene(Ni, S) []/[Count], repeat(Ni, S, Count).  
repeat(Ni, S, Count)  {next tag ∈ S},  

right hand side , repeat( Ni, S, Count1 ) ,  
{ Count is Count1+1 } .  

repeat( Ni, S, 0 )   { next tag ∉ S } . 
The variable Count in the new grammar rules counts 
how often the first repeat grammar rule is executed, 
i.e., how often the sub-tree described by the right 
hand side of the given kleene grammar rule is 
repeated. This number of repetitions will be used in 
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indexing, i.e., translating XML path queries to index 
positions for certain data.  

3.2 The Constants’ Data Stream  

Furthermore, we hash text values in a compressed 
data storage model, which allows us to transfer each 
constant only once.  

pcdata calls simply store the position of each 
constant in the CXML stream. A function 
positionOf(…) is used to store new constants in the 
data storage model, i.e., each constant is stored only 
once, and to attach the current position to the 
constant. Altogether, the data storage model stores 
constants together with a set of positions.  

Given the function positionOf(…), the pcdata 
grammar rule is implemented as follows:  

pcdata() [Constant]/[], {positionOf(Constant)}.  
An empty operator can be seen as a text constant 

of length 0, and it is treated in a similar way as a 
special kind of pcdata, i.e., the function call 
positionOf( ) is used for collecting positions of 
empty nodes. The only difference is that the empty 
operator does not consume or read any input. 

empty()  { positionOf( ) } . 

3.3 The Kleene Size Tree (KST)  

Besides compressing the constants in an XML 
stream, our goal is to compress a structure-oriented 
index, i.e., an index supporting efficient access to 
structural information without decompressing all of 
the compressed data. The key idea of our index 
compressing technique is to use the structure 
information provided by element declarations of the 
DTD in order to compute the position of certain 
elements or text values, such that the compressed 
index is much smaller than the structure of the XML 
document.  

For the DTD rule operators sequence, pcdata, 
empty, and child element, a relative position of the 
searched data in the data stream can be uniquely 
determined by the DTD alone. However, for each 
kleene operator (*), the number of repetitions may 
vary, and therefore the size of the data elements “in 
the scope of” a kleene operator may vary. 
Furthermore, for each choice operator (|), the size of 
the sub-tree may depend on the choice taken. We 
have to store this information somewhere in order to 
support loss-less decompression. We write this 
information into an index called the kleene size tree 
(KST). 

The kleene size tree (KST) is organized as 
follows: It contains a choice node for each choice 
operator (|), and a counter for each kleene operator 

(*) that is applied in a DTD rule when parsing the 
XML document with the DTD grammar rules. The 
hierarchy of the KST nodes corresponds to the 
calling hierarchy of DTD element declaration syntax 
rules. That is, whenever a rule for a kleene operator 
or a choice operator O1 directly or indirectly calls a 
rule for a kleene operator or a choice operator O2, 
then the KST node K1 representing O1 is an 
ancestor of the KST node K2 representing O2.  

Note that the KST does not contain any node for 
other operators than kleene (*) and choice(|) as all 
other operators have a fixed size, i.e., their size can 
be computed from the DTD. As the KST contains 
only numbers, the KST is a very small data 
structure. 

Note that the KST is significantly smaller than the 
index, i.e., transferring the KST from a sender to a 
receiver may be advantageous compared to 
transferring an index when bandwidth is a 
bottleneck. Furthermore, the KST and CXML file 
are not only much smaller than the XML file, but 
also allow for a direct access to XML nodes, i.e., 
using the KST for index computations and direct 
access to the CXML stream may be advantageous in 
scenarios where we can profit from skipping some 
XML data.  

In order to reconstruct the index, i.e., the structure 
of the XML document, from the DTD syntax trees 
and the KST, we have to traverse the DTD syntax 
trees starting from the root node. Whenever a kleene 
node or a choice node is reached, we consume the 
next number from the KST and generate the number 
of nodes (for kleene nodes) or the node with the 
chosen element name of the alternative (for choice 
nodes). Note however, that the index does not have 
to be reconstructed physically in case of XML path 
query evaluation or partial decompression, but it 
only needs to be reconstructed ‘virtually’, i.e., only 
the positions of the required elements are computed 
from DTD and KST, but the index is not 
reconstructed physically in order to count the 
position. Only in case of a complete decompression, 
the index is reconstructed completely, as it is the 
major part of the decompressed document. 

3.4 Using the Grammar Rules for Path 
Queries on Compressed Data  

When searching data that matches a certain path of 
an XPath expression, we use the KST stream to 
identify the position of the information we look for.  

Let us extend the previous example and assume 
that a given XML input document D has been 
compressed to a KST document KD and a CXML 
document CD. Furthermore, let us consider that an 
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XPath query /E1[2]# asks for the sub-tree enclosed 
in the second E1 element contained in the input 
stream. Finally, we assume that the first E1 element 
has 10 sequences, whereas 3 of them contain an E3 
element and 7 of them contain an E4 element and 
the second E1 element has 5 sequences, whereas 4 
of them contain E3 and one contains E4. This 
information is read from KD. Therefore, we can 
compute the size of the subtrees for the first E1 
element to be E11size =10*size(E2) + 3*size(E3) + 
7*size(E4) and for the second E1 Element to be 
E12size=5*size(E2) + 4*size(E3) + 1*size(E4). As 
E2 only contains pcdata, we know that size(E2)=1. 
We assume furthermore that E3 is a sequence of 
three elements with pcdata and E4 contains pcdata 
directly, i.e., size(E3)=3 and size(E4)=1. Given 
these sizes, the sizes of the compressed 
representations of the first two E1 elements are 
E11size= 10*1+3*3+7*1=26 and E12size 
=5*1+4*3+1*1=18. Altogether, when we query for 
/E1[2], we can skip the first E11size bytes from CD 
and then read and decompress the next E12size 
bytes from CD. Because we know that the fragment 
searched for matches the DTD for E1, we know 
which decompression grammar rule has to be used, 
in this case, the decompression grammar rule for E1. 
We explain decompression in the next section.  

The general computation of sub-tree sizes extends 
the KST with constant size information that can be 
derived from the element declaration rules. 
However, this computation is only done for paths to 
accessed CXML elements.  

3.5 Using the Grammar Rule Set for 
Decompression 

Similarly as for compression, the grammar rule set 
can be used for decompression. In our Prolog 
implementation this is simply done by switching the 
roles of the input stream and the output stream. 
More precisely, within a Prolog call 
element_decl(Input, OutputKST), the first 
parameter, Input, which is the input stream for 
compression, will be the output stream for 
decompression. Similarly, the second parameter 
OutputKST which is the KST output stream for 
compression will be an input parameter for 
decompression. Within a first prototype, we have 
implemented the augmented DCG rule system in 
Prolog in such a way that it can be used for both 
directions compression and decompression, by either 
providing an XML document Inputstream or 
providing a CXML document Outputstream and the 
KST document Outputstream. For the performance 
evaluation, we have re-implemented the grammar 

rule system in a different language, i.e., Java using a 
SAX parser and the attribute grammar of JavaCC, 
and there we had one augmented rule set for 
compression, and an additional reverse 
implementation for decompression.  

4 EXTENDING THE APPROACH 
TO XML STREAMS  

4.1 Processing XML Streams and 
Recursive DTDs  

We are not limited to compressing only XML 
documents of a fixed size. Instead, we are also able 
to compress XML streaming data because we do not 
have to read the whole document, before we can 
start data compression, i.e., the augmented grammar 
rules can be used to compress on the fly.1  

Furthermore, we did not limit our approach to 
non-recursive DTDs, i.e., all the same ideas can be 
applied, when the element declaration defining E1 is 
changed to a recursive element declaration  

< !ELEMENT E1 ( E2, ( E1|E4 ) )* >  
Therefore, our approach (including index 
computation and path evaluation) is also applicable 
to recursive DTDs.  

4.2 Evaluation of XPath Queries on 
Compressed XML Streams  

We assume that the XPath expression that is 
evaluated does not contain any backward-axes, but 
may contain any forward axes, predicate filters and 
node name tests (either an element name or the 
wildcard ‘*’). If an XPath expression contains 
backward-axes, the algorithm presented in (Olteanu, 
2002) can be used to rewrite the XPath expression 
into an equivalent XPath expression containing no 
backward-axes. 

For the evaluation of XPath queries, we propose 
an adaptation of an approach presented in (Su, 
2005). This approach optimizes XPath query 
evaluation on XML documents and especially on 
data streams, where the whole data has to be read at 
most once. The buffer size needed to store elements 
temporarily depends on the evaluation of XPath 
filters. Furthermore, schema information in the DTD 
reduces the computational time needed for deciding 
satisfiability of filters and determines parts of the 

                                                           
1 Due to space limitations, we skip some technical details here, 

e.g., providing space for very large counters in an index and the 
treatment of very large kleene size trees and of very large text 
constants. 
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data that can be skipped, as they do not contain any 
information needed to determine the answer to the 
query. This ‘skipping’ of parts of the data 
corresponds to directly addressing the known 
position of the next element as proposed in our 
approach. The difference however is that we have to 
process compressed XML data, i.e., in order to use 
the approach presented in (Su, 2005), we have to 
translate location steps into position offsets in the 
CXML stream.  

Which part of the data can be skipped, i.e., the 
concrete position-offset from a current position 
within the data, can be computed by combining the 
size information stored in the KST with offset 
information that is computed from the element 
declaration syntax trees.  

4.3 Multiplexing Stream Data  

When considering an XML stream, we have two 
kinds of output stream, the CXML data stream and 
the KST stream. In a practical implementation 
compressing XML streams, we multiplex these two 
data streams at the sender’s side, and de-multiplex 
the multiplexed stream back into the two streams at 
the receiver’s side. 

5 EXPERIMENTAL RESULTS 

We have implemented our approach using Java 1.5 
and a SAXParser for parsing XML data. As 
compressed storage model for constant data, we 
have chosen a trie (Fredkin, 1960) the inner nodes of 
which are compressed using Deflate (LZ77(Ziv, 
1977) + Huffmann encoding (Huffmann, 1952)). 
Note that the compressed storage model for constant 
data can be replaced by any other model that allows 
to store and evaluate pairs of positions and values. 

We have evaluated our compression approach on 
the following datasets: 
1. XMark(XM) – an XML document that models 

auctions (Schmidt, 2002) 
2. hamlet(H) – an XML version of the famous 

Shakespeare play 
3. catalog-01(C1), catalog-02(C2), dictionary-

01(D1), dictionary-02(D2) – XML documents 
generated by the XBench benchmark (Yao, 2002) 

4. dblp(DB) – a collection of publications 
As it can be seen in Table 1, the sizes of the 

documents reach from a few hundred kilobytes to 
more than 300 Megabytes. 

Table 1: Sizes of documents of our datasets. 

document XM H C1 C2 DB D1 D2 

Uncompressed 
size in MB 5.3 0.3 10.6 105.3 308.2 10.8 106.4

 

We have compared our approach with 3 other 
approaches: 

- XGrind (Tolani, 2002) – a queryable XML 
compressor  

- XMill (Liefke, 2000) – an XML compressor 
- gzip2 – a widely used text compressor 
The results can be seen in Figure 2. 

Figure 2: Compression ratio (size of the compressed data 
divided by size of the original data). 

Using these datasets, XMill performs better 
achieving compression ratios that are 3-8% lower 
than the compressions ratios reached by our 
approach. However, in contrast to XMill, our 
approach allows to evaluate queries on the 
compressed data and to partially decompress data. 

Compared to gzip, our approach achieves similar 
compression ratios, although gzip – as well as XMill 
– does not allow for evaluating queries on the 
compressed data. The difference of the compression 
ratios (gzip minus DTD subtraction) ranges from 6% 
(the gzip compression ratio is 6% smaller) to -3% 
(the gzip compression ratio is 3% bigger). 

XGrind is the only compression approach in our 
tests that is capable to evaluate queries on the 
compressed data like our approach. Our results have 
shown that our approach significantly outperforms 
XGrind. In our dataset, our approach performs better 
achieving compression ratios that are 12-25% lower 
than the compression ratios achieved by XGrind3.  

In a second series of measurements, we have 
compared the size of the structural part of the 
original XML document with the size of the KST. 
This means that we have compared the structure to 

                                                           
2 http://www.gzip.org/ 
3 Note that on our test computer, we got access violations 

when running XGrind on XM and DB and therefore the 
compression ratios for these two documents are missing. 
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be parsed in order to evaluate XML path queries. 
Our measurements have shown, that the size of the 
KST ranges in average around 3.6% of the size of 
the structural parts of the XML document. The 
concrete results of our experiments can be seen in 
Figure 3. |str|/|doc| means the size of the structural 
part of the document divided by the document size 
and |KST|/|str| means the size of the KST divided by 
the size of the structural part of the document. 

Figure 3: Relative size of the KST in comparison to the 
uncompressed structure and relative size of uncompressed 
structure in comparison to uncompressed document. 

6 RELATION TO OTHER 
WORKS  

There exist several algorithms for XML 
compression, which can be divided into categories 
by their features: some compressed XML documents 
can only be used to answer queries, if they are 
decompressed, other algorithms allow querying the 
compressed data. Another feature is whether XML 
compression algorithms can be applied to data 
streams or whether they can only be applied to static 
XML documents. 

The first approach to XML compression was the 
XMill algorithm presented in (Liefke, 2000). It 
compresses the structural information separately 
from the data. The data is – according to the 
enclosing tag – collected into several containers, and 
the whole container is compressed afterwards. The 
structure is compressed, by assigning each tag name 
a unique and short ID. After the compression, the 
compressed structure consists of the tag IDs which 
represent a start tag, the container IDs which 
represent a text value, and ‘/’-symbols which 
represent an end tag. An appropriate compressing 
algorithm is chosen for each container, depending on 
the data type it contains. This approach does not 
allow querying the compressed data and is not 
applicable to data streams. 

The approaches XGrind (Tolani, 2002), XPRESS 
(Min, 2003) and XQueC (Arion, 2003) form 

extensions of the XMill-approach. Each of these 
approaches compresses the tag information using 
dictionaries and Huffman-encoding (Huffmann, 
1952) and replaces the end tags by either a ‘/’-
symbol or by parentheses. All three approaches 
allow querying the compressed data, and, although 
not explicitly mentioned, they all seem to be 
applicable to data streams. A disadvantage of 
XGrind is, that it does not support range queries 
(e.g., //a[@b<50]), but only match queries (e.g., 
//a[@b=50]) or prefix queries. Instead, it allows a 
validity test on compressed data using a DTD. In 
contrast, XQuec supports range queries as well, as 
XQuec uses an order-preserving compression 
approach for the compression of the data. 

XQzip (Cheng, 2004) and the approach presented 
in (Buneman, 2003) compress the data structure of 
an XML document bottom-up by combining 
identical sub-trees. Afterwards, the data nodes are 
attached to the leaf nodes, i.e., one leaf node may 
point to several data nodes. The data is compressed 
by an arbitrary compression approach. These 
approaches allow querying compressed data, but 
they are not applicable to data streams. In addition, 
an approach to evaluate XQuery on the results of 
(Buneman, 2003) is presented in (Buneman, 2005).  

An extension of (Buneman, 2003) and (Cheng, 
2004) is the BPLEX algorithm presented in 
(Busatto, 2005). This approach does not only 
combine identical sub-trees, but recognizes patterns 
within the XML tree that may span several levels, 
and therefore allows a higher degree of compression. 
As its predecessors, it allows querying the 
compressed data, but it is not applicable to data 
streams. 

In contrast to all these approaches, our algorithm 
allows querying (including match, prefix and range 
queries) and is applicable to data streams. It achieves 
an even higher level of compression, as it only 
contains compressed data plus some sparse 
information added for each choice operator and each 
kleene operator contained in the DTD. As our 
compressed XML data contains nearly no structural 
information, only valid documents can be 
decompressed, i.e., our approach does not allow for 
checking validity. 

The approach presented in (Sundaresan, 2001) 
follows the same basic ideas as our approach: omit 
all information that is redundant because of the 
DTD. But the idea to realise this idea is completely 
different from our approach. In (Sundaresan, 2001) a 
DOM-tree is built and traversed simultaneously for 
the DTD and the XML document. Whenever the 
document contains information not found in the 
DTD, this information is written to the compressed 
document. So the resulting compressed document is 
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nearly the same as in our case (e.g., text values are 
encoded differently), but whereas our approach is 
capable to sequentially compress infinite data 
streams (and to perform path queries on the 
compressed data) the approach presented in 
(Sundaresan, 2001) is limited by the size of main 
memory (According to (Sundaresan, 2001) they had 
problems with a file of 281 kB (the smallest test file 
in our data set), as it exceeded their time threshold, 
whereas we were able to compress a document of 
more than 300 MB in decent time). 

Another approach (Ng, 2006) also follows the 
idea to omit information that is redundant because of 
the DTD. It is also using a SAX-parser, i.e., this 
approach is capable to compress infinite data 
streams. However, this approach uses the paths 
allowed by a non-recursive DTD to define a set of 
buffers and stores constants found in the XML 
document in the buffer defined for their path before 
compressing the whole buffer. As the number of 
buffers must be finite, this approach does not 
support recursive DTDs. Furthermore, (Ng, 2006) 
leaves it open how to treat constants other than 
numbers. In comparison, our approach can store text 
constants and can handle recursive DTDs.  

7 SUMMARY AND 
CONCLUSIONS 

Structure preserving compression of XML data 
based on DTD subtraction reduces the verbose 
structural parts of XML documents that are 
redundant when regarding the structure of a given 
DTD, but preserves enough information to search 
for certain paths in the compressed XML data. Our 
approach uses given DTD element declarations to 
generate a set of grammar rules, which is then 
augmented to an attribute grammar for either 
compression of an XML document to a KST and a 
CXML document, for decompression of a KST and 
a CXML document or for translating XPath queries 
into index positions on CXML data. Our approach 
can be extended to arbitrary DTDs as well as to 
other schema languages that allow to derive a set of 
grammar rules (e.g., XML Schema and RelaxNG) 
and to XML streams.  

Of course, our structure preserving compression 
technique can be combined with an ordinary 
compression and decompression, i.e., a normal 
compression and decompression technique could be 
applied to the data generated by our structure 
preserving compression, in order to send an even 
less amount of data from a sender to a recipient. 
Note however that our overall goal is not only to get 

a low compression size, but the main focus of our 
contribution is to enable path query processing on 
compressed data.  

As XPath forms the major part of other query 
languages like XQuery and XSLT, we are optimistic 
that our approach could also be applied to XQuery 
and XSLT.  
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