
AN ADAPTIVE DOMAIN KNOWLEDGE MANAGER FOR 
DIALOGUE SYSTEMS 

Porfírio Filipe1, 2, Luís Morgado2, 4 and Nuno Mamede1, 3 
1 L2F INESC-ID - Spoken Languages Systems Laboratory, Lisbon, Portugal 

2 GIATSI, ISEL – Instituto Superior de Engenharia de Lisboa, Lisbon, Portugal 
3 IST – Instituto Superior Técnico, Lisbon, Portugal 

4 LabMAG, FCUL – Faculdade de Ciências da Universidade de Lisboa, Lisbon, Portugal 

Keywords: Human–Computer Interaction, Spoken Dialogue System, Dialogue Management, Domain Model. 

Abstract: This paper describes the recent effort to improve our Domain Knowledge Manager (DKM) that is part of a 
mixed-initiative task based Spoken Dialogue System (SDS) architecture, namely to interact within an 
ambient intelligence scenario. Machine-learning applied to SDS dialogue management strategy design is a 
growing research area. Training of such strategies can be done using human users or using corpora of 
human computer dialogue. However, the size of the state space grows exponentially according to the state 
variables taken into account, making the task of learning dialogue strategies for large-scale SDS very 
difficult. To address that problem, we propose a divide to conquer approach, assuming that practical 
dialogue and domain-independent hypothesis are true. In this context, we have considered a clear separation 
between linguistic dependent and domain dependent knowledge, which allows reducing the complexity of 
SDS typical components, specially the Dialoguer Manager (DM). Our contribution enables domain 
portability issues, proposing an adaptive DKM to simplify DM’s clarification dialogs. DKM learns, through 
trial-and-error, from the interaction with DM suggesting a set of best task-device pairs to accomplish a 
request and watching the user’s confirmation. This adaptive DKM has been tested in our domain simulator. 

1 INTRODUCTION 

This paper describes our recent effort to improve our 
Domain Knowledge Manager (DKM) that is part of 
a mixed-initiative task based Spoken Dialogue 
System (SDS), such as described by Neto et al. 
(2003), namely to support generic dialogue 
management strategies within an Ambient 
Intelligence (AmI) vision (Ducatel et al., 2001), 
(Filipe and Mamede, 2006b). 

A SDS should be a computational entity that 
allows access to any device by anyone, anywhere, at 
anytime, through any media, allowing its user to 
focus on the task, not on the tool. Only in the last 
decade, with major advances in speech technology, 
have large-scale working SDS been developed and, 
in some cases, introduced into commercial 
environments (McTear, 2004). 

Speech-based human-computer interaction faces 
several challenges in order to be more widely 
accepted. One of the challenges in dialogue 

management is to control the dialogue flow 
(dialogue strategy) in an efficient and natural way. 
Dialogue strategies designed by humans are prone to 
errors, labour-intensive and non-portable, making 
automatic design an attractive alternative. Learning 
dialogue strategies from real users is a very 
expensive and time-consuming process, making 
automatic learning an attractive alternative. 

Machine-learning applied to SDS dialogue 
management strategy design is a growing research 
area. Training of such strategies can be done using 
human users or using corpora of human computer 
dialogue. However, the size of the state space grows 
exponentially according to the state variables taken 
into account, making the task of learning dialogue 
strategies for large-scale SDS very difficult. 

In this paper, we propose a divide to conquer 
approach assuming that practical dialogue and 
domain-independent hypothesis are true (Allen et al. 
2000). The reason is that all applications of 
human-computer interaction involve dialogue 

45
Filipe P., Morgado L. and Mamede N. (2007).
AN ADAPTIVE DOMAIN KNOWLEDGE MANAGER FOR DIALOGUE SYSTEMS.
In Proceedings of the Ninth International Conference on Enterprise Information Systems - HCI, pages 45-52
DOI: 10.5220/0002384200450052
Copyright c© SciTePress



 

focussed on accomplishing some specific task. We 
consider the bulk of the complexity in the language 
interpretation and dialogue management is 
independent of the task being performed. In this 
context, a clear separation between linguistic 
dependent and domain dependent knowledge allows 
reducing the complexity of SDS typical components, 
specially the DM. 

Our contribution enables domain portability 
issues, proposing an adaptive DKM to simplify DMs 
clarification dialogs, reducing the amount of user’s 
interactions to solve dialogue ambiguities. In this 
scenario, the DKM learns through trial-and-error 
from the interaction with the DM, suggesting the 
best task-device pairs to accomplish a request and 
watching the user’s confirmation. 

Summarizing, our contribution enables domain 
portability issues reducing the amount of user’s 
interactions wasted to solve dialogue ambiguities. In 
Section 2, we describe some domain portability 
issues focusing DM and DKM interaction. Section 3 
gives an overview of the most relevant components 
of the domain model built-in the DKM. Section 4 
describes the advisor service proposed to enhance 
the DKM covering performance issues and the 
adaptive approach. Section 5 makes a description of 
our domain simulator. Finally, in Section 6, we 
present concluding remarks and future work. 

2 DOMAIN PORTABILITY 

This section describes some domain portability 
issues focusing the DM and DKM interaction.  

While some are concerned with the generation of 
systems from on-line content (Feng et al., 2003), 
others have addressed portability issues within the 
DM (Denecke, 2002) and the understanding 
components (Dzikovska et al., 2003). Nevertheless, 
many implementations of DMs perform input 
interpretation, output generation, and domain 
specific tasks. These tasks are typically domain 
dependent because its designs consider particular 
requirements of each domain.  

The design of a DM that can be easily 
customized to new domains and in which different 
dialogue strategies can be explored, should only 
concern phenomena related to the dialogue with the 
user, focusing on dialogue and on discourse 
strategies. The DM component should not be 
involved in the process of accessing a background 
system or performing domain reasoning. For this, 
should be considered another component of SDS 
architecture, the DKM, which handles these features 

(Flycht-Eriksson and Jönsson, 2000). The DKM is in 
charge for retrieving and coordinating knowledge 
from the different domain knowledge sources and 
application systems, traditionally named background 
system. The DM can deliver a request to the DKM 
and in return expects an answer retrieved from the 
background system. If a request is under-specified or 
contains inconsistencies from the DKM’s point of 
view, a specification of the problem will be returned 
to the DM that will start a clarification dialogue. In 
these circumstances, the DKM allows the 
customization of the DM enabling domain 
portability and easy configuration of the SDS 
architecture. 

Within AmI vision, the DKM supports the 
communication interoperability between the SDS 
and a set of heterogeneous devices. Figure 1 shows 
the generic SDS architecture diagram used as 
reference to report our work.  

 

 
Figure 1: Generic SDS architecture in AmI. 

In Figure 1, Xn represents a generic device and 
A, B, C, and D are other components of the SDS 
architecture. Figure 1 shows the DKM working as a 
broker: the DKM uses the advisor service to deliver 
the best task-device pairs. When the user’s request is 
unambiguous, the DM calls the DKM that invokes 
the selected task supported by the associated device. 

3 DOMAIN MODEL 

This section gives an overview of the most relevant 
components of the domain model built-in the DKM 
and used as domain knowledge source by the DM. 

In order to achieve its goal, the DKM includes a 
domain model with three independent knowledge 
components: DISCOURSE model, WORLD model, 
and TASK model. This domain model architecture 
was adapted from the Unified Problem solving 
Method Development Language (UPML) (Fensel et 
al., 1999). For the sake of space, a detailed 

ICEIS 2007 - International Conference on Enterprise Information Systems

46



 

description of the content of the components will be 
omitted. For a complete description see (Filipe e 
Mamede, 2006a) and (Filipe e Mamede, 2006c). 

3.1 DISCOURSE Model 

The DISCOURSE model defines a conceptual 
support, grouping concept declarations, used to 
describe device classes, devices, and the tasks they 
provide. A concept declaration defines an atomic 
knowledge unit. 

Concept declarations are organized in four 
groups of collections. The general group maintains 
all the collections. The task group contains two 
collections: action and perception that hold the task 
names. The quantity group contains two collections 
number (integer, real, positive, integer, …) and 
measure (time, power, …). The attribute group 
contains collections of concepts that are usually 
attributes (color, shape, texture, …). The artifact 
group contains the set of device/artifact classes 
(artifact, equipment, application, furniture, 
appliance, …) that can by referred in the type 
hierarchy. 

In order to guarantee the availability of 
vocabulary to designate the domain’s concepts, 
concept declarations include linguistic resources. 
This approach tries to reach the ubiquitous essence 
of natural language. Although, the coverage of 
handmade resources such as WordNet (Fellbaum, 
1998) in general is impressive, coverage problems 
remain for applications involving specific domains 
or when multiple languages are used. Unlike a 
terminology inspired ontology (Gruber, 1992), 
concepts are not included for complex terms (word 
root or stem) unless absolutely necessary. For 
example, an item such as “the yellow house” should 
be treated as an instance of a “house”, having the 
color “yellow” without creating the concept “yellow 
house”. 

A linguistic descriptor linked to a concept 
declaration holds a list of terms or more generically, 
a list of Multi Word Unit (MWU) (Daille et al., 
1994). A MWU list contains linguistic variations 
used to refer a concept, such as synonymous or 
acronyms. Each word, has a part of speech tag, such 
as noun, verb, adjective or adverb; a language tag, 
such as “pt”, “br”, “uk” or “us”; and a group of 
selected phonetic transcriptions.  

For instance, if the language tag of a word is “pt” 
its phonetic transcription is encoded using the 
Speech Assessment Methods Phonetic Alphabet 
(SAMPA) for European Portuguese. 

A concept declaration can also refer optionally 
semantic resources. A semantic descriptor has 
references to internal or external knowledge sources, 
for instance, an ontology or a lexical database, such 
as the WordNet. The knowledge sources references 
must be unique, because each meaning must be 
unique. 

The references to knowledge sources must be 
encoded using a non-ambiguous data format. The 
data format of the knowledge source reference do 
not need to be universal, it is enough to keep the 
same data format for a particular knowledge source. 
We recommend the use of a generic Uniform 
Resource Identifier (URI) format to encode the 
references to knowledge sources. 

3.2 WORLD Model 

The WORLD model has two components: a type 
hierarchy module and a mediator module. The type 
hierarchy organizes the device/artifact classes, for 
instance in a home environment, the device class 
may be either an appliance, or a light, or a window, 
or a table. The mediator manages device instances 
linked to their classes. 

3.3 TASK Model 

The TASK model contains task descriptors (Tn) that 
are associated to device (Xn) instances through links 
(Tn  Xn). Table 1 depicts a task descriptor where 
the “*” means mandatory fulfilling. 

Table 1: Device Task Descriptor. 

SSlloott  VVaalluuee  

name* ID-Task 

name* ID-Attribute 
range* ID-Attribute 

restriction rule 
input role 

default ID-Value 
other input roles … 

input list 

pre-condition rule 

name* ID-Attribute 
output role 

range* ID-Attribute 

other output roles … 
output list 

post-condition rule 
initial condition rule 

assumptions 
final condition rule 

 
We consider two kinds of tasks: actions and 

perceptions. A perception task cannot modify the 
state of the device, on the other hand an action task 
can. 

AN ADAPTIVE DOMAIN KNOWLEDGE MANAGER FOR DIALOGUE SYSTEMS

47



 

A task descriptor is a semantic representation of 
a device competence and has a name and optionally 
an input list, an output list, and assumptions. The 
task name is a concept previously declared in the 
task group of the DISCOURSE model. 

The input list, that describes the task input 
parameters, has a set of optional input roles. An 
input role, that describes one input parameter, has a 
name, a range, a restriction, and a default. The name 
and range are concepts declared in the attribute 
group of the DISCOURSE model. The restriction is 
a rule that is materialized as a logical formula and is 
optional. The range rule and the restriction rules 
define the set of task parameter allowed values. For 
instance, if the range is a positive integer and we 
want to assure that the parameter is greater  
than 5, then we must indicate the restriction rule:  
“name > 5”. The default optional slot of an input 
role is a concept member of the quantity group of 
the DISCOURSE model. If the default is not 
provided the input role must be filled. 

The output list, that describes the output 
parameters, has a set of optional output roles. An 
output role, which describes one output parameter, is 
similar to an input role without a restriction rule and  
with no default value. 

The rules belonging to the task descriptor allow 
three kinds of validation rules: (i) restriction rules to 
perform individual parameter validation; (ii) 
pre-condition rules check input parameters before 
task execution; and (iii) post-condition rules check 
output parameters after task execution. A restriction 
rule can refer the associated input role, the 
pre-condition rule can refer task input role names 
and the pos-condition rule can refer output role 
names. An assumption performs state validation: the 
initial condition (to check the initial state of the 
world before a task execution) and the final 
condition (to check the final state of the word after a 
task execution). The assumption rules can refer role 
names and values returned by perception task calls. 

The state of the world is composed by all device 
states. The state of each device is obtained by calling 
the provided perception tasks. For instance, if the 
request is “switch on the light”, we have to check if 
the “light” is not already “switched on” and after the 
execution, we have to check if the “light” has really 
been “switched on”. 

4 ADVISOR 

This section describes an advisor service proposed to 
suggest the best task-device pairs that satisfy a 

request formalized in a list of domain’s concepts. 
This section also covers performance issues and the 
adaptive approach presenting local examples. 

In order to allow flexible behaviour in user 
interaction, a DM must be able to handle 
under-specified requests (the user provides only 
partial information). The DM must decide which 
task should be performed. Our approach is to use 
domain dependent information, for instance, in a 
particular domain the user’s preferred choice may be 
“turn-on the light” for the request “turn-on”, but in 
another domain without lights, the best choice is 
certainly different. 

Since the DM does not know the domain model, 
the DM submits a list of pivot concepts that 
represent a request and the advisor service returns 
the best task-device pair. This service allows the 
DKM to offer a high level and easy to use small 
interface instead of a conventional service interface 
with several remote procedures/methods. 

4.1 Advisor Basic Algorithm 

The ideas behind this service are based on the 
relative weight (relevance) of each concept that are 
present in the request. Two independent ranking, for 
tasks and devices, are used to compute the best 
task-device pairs. The ranking points are determined 
considering three heuristic values: nABase, nTBase, 
and nTUnit. The nABase value is determined by the 
maximum height of the domain model type 
hierarchy plus one. The nTBase value is determined 
by the maximum number of task roles (arguments) 
plus one. The nTUnit value is constant and equal to 
three that are the number of ways to reference a task 
role (by name, range, or value). The advisor service 
uses as input a list of pivot concept. The pivot 
concepts references to tasks and devices are 
converted into points that are credited in the 
respective device or task rank.  

The rank of a device is modified according to the 
following rules: 
1. If the pivot concept refers a device name, the 

value nABase*2 is credited in the respective 
device rank; 

2. If the pivot concept refers a device class name, 
the value nABase is credited in the respective 
device rank; 

3. If the pivot concept refers a device super-class 
name, the value nABase-n is credited in the 
respective device rank, where n is determined 
by the number of classes (in the type hierarchy), 
between the device class and the referred super-
class. 

ICEIS 2007 - International Conference on Enterprise Information Systems

48



 

The rank of a task is modified according to the 
following rules: 
4. If the pivot concept refers a task name, the value 

nTBase*nTUnit is credited in the respective task 
rank; 

5. If the pivot concept refers a task role name or a 
task role range, the value nUnit/2 is credited in 
the respective task rank; 

6. If the pivot concept refers a task parameter, the 
value nTUnit/3 is credited in the respective task 
rank. 

Finally, task-device pairs are composed selecting 
the tasks with the best rank and the devices, which 
provide the tasks, with the best rank. 

4.2 Performance 

The SDS research issues should be specified 
according to the purpose for which the SDS is 
intended. If the goal is to make the system work in 
the field, then robust performance and real time 
operation become key factors, and the DKM should 
drive the user to speak in a constrained way. Under 
these circumstances, the interaction model will be 
simple. In this context, the advisor service use will 
be inefficient because of the processing time wasted 
applying all the advisor rules to all pivot concepts. 

In order to improve the advisor service 
performance we propose the use of an index table to 
keep the advisor rules results. For each concept that 
figures in the DISCOURSE model, an index table 
maintains the points credited to each specific device 
and task. 

Table 2: Index table example. 

CCoonncceepptt  IIDD  DDeevviiccee  IIDD  PPooiinnttss  TTaasskk  IIDD  PPooiinnttss  

13 - - 100008 12 

13 - - 100010 12 
16 - - 100029 1 

57 - - 100029 12 

91 9 5 - - 
105 - - 100010 1.5 

105 - - 100004 1.5 

100002 2 10 - - 
100057 - - 100010 1 

… … … … … 

 
Table 2 presents an example of an index table. 

For instance, Rule 6 always adds 1 point to tasks, 
IDs 100029 and 100010, referred by concepts, IDs 
16 and 100057. 

An index table can be build at design time or at 
runtime. When the index table is build at runtime we 
propose an incremental approach, if a pivot concept 

does not exists in index table all the advisor rules are 
applied to the concept provoking an index table 
update. The advisor service, instead of applying all 
the rules for each concept, consults the index table to 
obtain the respective points. After, the points are 
credited in the respective device or task rank. 

4.3 Adaptive Approach 

In some cases the advisor basic algorithm conduces 
to situations where the tasks and/or devices have 
similar or even the same ranking points. In this 
situation, the best task-device pair is not clearly 
determined, demanding for a clarification dialogue. 

One way to address this problem is by endowing 
the DM with the ability to interactively learn dialog 
strategies, namely by using reinforcement learning 
approaches (Henderson et al., 2005), (Schatzmann et 
al., 2006). However, although this kind of 
approaches present interesting characteristics in 
what concerns learning of dialog strategies, they 
suffer from well-known drawbacks for online 
operation, especially in what concerns the number of 
interactions needed for convergence, which restricts 
their application mainly to offline processing. On 
contrary, in online dynamic environments, the user 
interactions are relatively scarce and the SDS must 
be able to adapt its operation taking advantage of 
these limited interactions. 

The main focus of our adaptive approach is not 
on learning complex dialog strategies, but on 
dynamically adapting the relevance of task-device 
pairs according to user interaction, watching the 
selection or rejection expressed in previous user’s 
clarification dialogues. As an example, lets consider 
the case where the user is in the kitchen and selects 
the task “turn-on”. Since “turn-on” must refer to 
some device, SDS asks the user to specify the device 
he/she wants to refer (e.g., a microwave oven, or the 
ceiling lights).  

Therefore, the SDS must decide about which 
devices it should ask the user first. Consequently, 
some form of device relevance is needed to enable 
the selection of devices according to the selected 
task and the previous history of user interaction. 

4.4 Dynamic Adaptation of Device 
Relevance 

To allow for a dynamic adaptation of device 
relevance, we propose a model where device 
relevance is seen as a form of activation potential, 
following the Agent Flow Model proposed by 
Morgado & Gaspar (2004). 

AN ADAPTIVE DOMAIN KNOWLEDGE MANAGER FOR DIALOGUE SYSTEMS

49



 

The idea is “a fixed amount of activation 
potential is shared by all the devices associated to a 
task”. To reflect the fact that a device ds was 
selected for a task t, some amount of activation 
potential will flow into it. However, since the total 
activation potential is fixed, this flow is provided by 
each non-selected device dns in the proportion of 
their actual activation potential. Formally, the 
activation flow ϕτ (t,ds) ∈ ℜ is defined as: 

)),((),( max
ss dtdt ττ εεαϕ −=  (4.4.1)

where ετ (t,ds) ∈ ℜ represents the activation potential 
of device ds relative to task t at some discrete time 
instant τ ∈ ℵ, εmax ∈ ℜ represents the maximum 
activation potential and α ∈ [0, 1] represents a 
coefficient that regulates de flow of activation 
potential. By regulating the flow of activation 
potential, the coefficient α controls the rate at which 
adaptation occurs. Low values of α result in slow 
changes to user feedback, while high values of α 
result in fast changes. 

The increase of activation potential in a selected 
device ds due to the accumulation of activation flow, 
is defined as: 

),(),(),(1 sss dtdtdt τττ ϕεε +=+  (4.4.2)

Reciprocally, a non-selected device will release 
activation flow in the proportion of their actual 
activation potential, leading to the decrease of its 
activation potential, defined as follows: 

),(
),(

),(
),(),(1 s

nsdd

ns
nsns dt

dt
dt

dtdt τ
τ

τ
ττ ϕ

ε
ε

εε
∑
≠

+ −=  (4.4.3)

 
In this way, the proposed mechanism enables a 

dynamic adaptation based on the feedback provided 
by the user, through the adjustment of the 

distribution of activation potentials associated to 
devices. It acts like a continuous memory 
mechanism, which aim is not to learn a long-term 
dialog strategy but instead to provide short-term 
adaptation ability. This mechanism can be seen as a 
form of temporal difference adaptation (Sutton, 
1988; Sutton & Barto, 1998; Staddon, 2001). 

4.5 Dynamic Adaptation Example 

To illustrate the operation of the proposed 
mechanism lets consider a simple scenario where the 
user selects a task t1 several times with five available 
devices to choose (d1 to d5). In the simulation, the 
configuration parameters of the adaptive mechanism 
were set to α = 0.5, which is a medium range 
adaptation rate, the initial activation potential 
ε0 (t,d) = 1 for all task-device pairs, and εmax = 2, 
which corresponds to the maximum activation 
potential. 

As shown in Figure 2, initially all the devices 
have the same activation potential. However, when 
the user selects d2 for the first time, the user 
feedback leads to an increase of the activation 
potential of the selected device and to the decrease 
of the activation potential of non-selected devices, as 
previously described. 

At the third interaction, the user changes its 
choice from device d2 to device d3. This action 
produces a readjustment of the activation potentials, 
leading to the increase of d3 activation potential. 
However, as can be observed in Figure 2, the 
increase of device d3 activation potential 
asymptotically converges to εmax, therefore avoiding 
possible runways. This enables a prompt 
readjustment of activation potentials in the case of 
user choice change. 

 
Device  Activation Potencial

0
0,2

0,4
0,6

0,8
1

1,2
1,4

1,6
1,8

2

No dev ice
selected

d2 selected d2 selected d3 selected d3 selected d3 selected d3 selected d3 selected

User Selection

A
ct

iv
at

io
n 

Po
te

nt
ia

l

d1

d2

d3

d4

d5

 
Figure 2: Evolution of the device activation potential according to user interaction. 

ICEIS 2007 - International Conference on Enterprise Information Systems

50



4.6 Discussion 

As illustrated in the previous example, the adaptive 
mechanism enables short-term adaptation to user 
interaction, therefore simplifying DMs clarification 
dialogs, reducing the amount of user’s interactions 
to solve dialogue ambiguities. 

The proposed advisor service combines (i) an 
heuristic rule-based algorithm with (ii) an adaptive 
mechanism. The first one produces device and task 
ranks. The second one enables the reordering of the 
top ranking elements when they have similar ranks, 
according to previous user interactions. This 
combined operation allows the advisor service to 
discriminate among different choices even in the 
case of under-specified requests. 

This kind of operation is particularly important 
when using spoken language, because the exhaustive 
enumeration of all the possible choices is typically 
inefficient, at least it will be boring for the user.  

5 EXPERIMENTAL SETUP 

Our current research is supported by our own 
domain simulator, in which we are using and, among 
others the proposed advisor service. This simulator 
allows the debug of an invoked task and the 
simulation of the interaction with a particular device. 
With this simulator, we can activate and deactivate 
devices, execute the tasks, obtain the answers and 
observe the behavior of the devices. We can also 
consult and print several data about the device 
interfaces. Currently, the environment simulator 
incorporates nine device simulators: an air 
conditioner simulator with 24 tasks using 63 
concepts, a freezer simulator with 13 tasks using 96 
concepts, a fryer simulator with 23 tasks using 92 
concepts, a light source simulator with 20 tasks 
using 62 concepts, a microwave oven simulator with 
26 tasks using 167 concepts, a kitchen table 
simulator with 13 tasks using 48 concepts, a water 
faucet simulator with 24 tasks using 63 concepts, a 
window simulator with 13 tasks using 44 concepts 
and a window blind simulator with 22 tasks using 65 
concepts. 

Figure 3 shows a screenshot of our home 
environment simulator that presents a microwave 
oven simulator selected by user’s request “defrost 
codfish”, where the selected cooking period is 8 
minutes and the power is set to defrost. 

 

 
Figure 3: Microwave oven simulator. 

The example presented in Section 4.5 
corresponds to a situation where devices of the same 
class, which are similar, can be activated by the 
same task (e.g. “turn-on”), as is the case of choosing 
among several light sources or to choose between 
turning on some light sources or the microwave 
oven. 

6 CONCLUDING REMARKS AND 
FUTURE WORK 

The work reported in this paper is a significant 
contribution to improve the flexibility, and 
simultaneously the portability, of the SDS 
multi-propose architecture being developed in our 
lab. In this paper, we have devised an adaptive 
approach to enhance a DKM in order to offer a 
high-level easy to use small interface, instead of a 
conventional service interface with several remote 
procedures/methods. 

If the goal is to make the system work in the 
field, then performance and real time operation 
become key factors, and the dialogue manager 
should drive the user to speak in a constrained way. 
Under these circumstances, the interaction model 
will be simple. Our approach simplifies the interface 
of the DKM, which is an important feature to split 
dialogue (linguistic) and domain issues. We have 
presented this subject focusing some examples. 

An interesting aspect of our advisor service is its 
intrinsically ability to deal with the “concept drift” 
issue, since it is able to work at runtime with 
unforeseen changes in user preferences. 

The presented ideas have been applied, with 
success, in a domain materialized as a set of 
heterogeneous devices that represents a home 
environment. 

As future work, we expect to address a 
multi-user interaction scenario by extending the 
advisor adaptive mechanism to deal with different 
user's profiles. We also expect to explore the 
presented ideas, more deeply, applying them into a 

AN ADAPTIVE DOMAIN KNOWLEDGE MANAGER FOR DIALOGUE SYSTEMS

51



 

richer domain model trying to cover new 
perspectives. 

ACKNOWLEDGEMENTS 

This work is partially supported by GIATSI project 
“Integração Dinâmica de Dispositivos em Ambientes 
Inteligentes” (ID2AI). 

REFERENCES 

Allen, J., Byron, D., Dzikovska, M., Ferguson, G., 
Galescu, L., Stent, A., 2000. An Architecture for a 
generic dialogue shell. Natural Language 
Engineering, 6(3–4):213–228. 

Daille, B., Gaussier, E., Lange, J., 1994. Towards 
Automatic Extraction of Monolingual and Bilingual 
Terminology. In 15th International Conference on 
Computational Linguistics. Kyoto, Japan. 

Denecke, M., 2002. Rapid Prototyping for Spoken Dialog 
Systems. In  COLING’02, 19th International 
Conference on Computational Linguistics. Taipei, 
Taiwan. 

Ducatel, K., Bogdanowicz, M., Scapolo, F., Leijten, J. and 
Burgelman, J-C., 2001. Scenarios for Ambient 
Intelligence in 2010. IST Advisory Group Report. 
IPTSSeville (Institute for Prospective Technological 
Studies). 

Dzikovska, M., Allen, J., Swift, M., 2003. Integrating 
linguistic and domain knowledge for spoken dialog 
systems in multiple domains. In IJCAI’03, 18th 
International Joint Conference on Artificial 
Intelligence. Acapulco, Mexico. 

Fellbaum, C. (editor), 1998. WordNet: An Electronic 
Lexical Database. MIT Press. 

Feng, J., Bangalore, S., Rahim, M., 2003. Webtalk: 
Mining Websites for Automatically Building Dialog 
Systems. In IEEE ASRU, Automatic Speech 
Recognition and Understanding Workshop. United 
States, Virgin Islands. 

Fensel, D., Benjamins, V., Motta, E., Wielinga, B., 1999. 
UPML: A Framework for Knowledge System Reuse. 
In 16th International Joint Conference on Artificial 
Intelligence. Stockholm, Sweden. 

Filipe, P., Mamede, N., 2006a. A Framework to Integrate 
Ubiquitous Knowledge Modeling. In 5th International 
Conference on Language Resources and Evaluation. 
Genoa, Italy. 

Filipe, P., Mamede, N., 2006b. Hybrid Knowledge 
Modeling for Ambient Intelligence. In 9th Workshop 
User Interfaces for All (ERCIM-UI4ALL) Special 
Theme: "Universal Access in Ambient Intelligence 
Environments". Königswinter, Germany. Springer 
Verlag. 

Filipe, P., Mamede, N., 2006c. Ubiquitous Knowledge 
Modeling for Dialogue Systems. In ICEIS 2006, 8th 

International Conference on Enterprise Information 
Systems. Paphos, Cyprus. 

Flycht-Eriksson, A., Jönsson, A., 2000. Dialogue and 
Domain Knowledge Management in Dialogue 
Systems. In 1st SIGdial Workshop on Discourse and 
Dialogue, Hong Kong. 

Gruber, T., 1992. Toward Principles for the Design of 
Ontologies Used for Knowledge Sharing. In 
International Workshop on Formal Ontology. Padova, 
Italy. 

Henderson, J., Lemon, O., Georgila, K., 2005. Hybrid 
Reinforcement/Supervised Learning for Dialogue 
Policies from Communicator Data. In IJCAI’05, 19th 
International Joint Conference on Artificial 
Intelligence Workshop on KRPDS. Edinburgh, 
Scotland.      

McTear, M., 2004. Spoken Dialogue Technology: 
Towards the Conversational User Interface. Springer 
Verlag. 

Morgado, L., Gaspar, G., 2004. Focusing Reasoning 
Through Emotional Mechanisms. In ECAI’04, 16th 
European Conference on Artificial Intelligence. IOS 
Press. Valencia, Spain. 

Neto, J., Mamede, N., Cassaca, R. and Oliveira, L., 2003. 
The Development of a Multi-purpose Spoken 
Dialogue System. In Eurospeech 3003, 8th European 
Conference on Speech Communication and 
Technology, Geneva, Switzerland. 

Schatzmann, J., Weilhammer, K., Stuttle, M.,  Young, S., 
2006.  A Survey of Statistical User Simulation 
Techniques for Reinforcement-Learning of Dialogue 
Management Strategies. The Knowledge Engineering 
Review, 21(2):97 126. 

Staddon, J., 2001. Adaptive dynamics: the theoretical 
analysis of behavior. MIT Press. 

Sutton, R., 1988. Learning to Predict by the Method of 
Temporal Differences. Machine Learning, 3(1):9-44. 

Sutton, R., Barto, A., 1998. Reinforcement Learning. MIT 
Press. 

 

ICEIS 2007 - International Conference on Enterprise Information Systems

52


