Figure 2: Sample from the merged computer science ontology.
REFERENCES
Bechhofer, S., van Harmelen, F., Hendler, J., Horrocks, I.,
McGuinness, D. L., Patel-Schneider, P. F., and Stein,
L. A. (2004). OWL Web Ontology Language Refer-
ence. Available at (February 2006):
http://www.w3.
org/TR/owl-ref/
.
Brewster, C., Alani, H., Dasmahapatra, S., and Wilks, Y.
(2004). Data driven ontology evaluation. In Proceed-
ings of LREC 2004.
Buitelaar, P., Cimiano, P., and Magnini, B., editors (2005).
Ontology Learning from Text: Methods, Evaluation
and Applications. IOS Press.
Cimiano, P. and V
¨
olker, J. (2005). Text2Onto - a framework
for ontology learning and data-driven change discov-
ery. In Proceedings of the NLDB 2005 Conference,
pages 227–238. Springer-Verlag.
Gomez-Perez, A., Fernandez-Lopez, M., and Corcho, O.
(2004). Ontological Engineering. Advanced Informa-
tion and Knowledge Processing. Springer-Verlag.
Haase, P. and V
¨
olker, J. (2005). Ontology learning and rea-
soning - dealing with uncertainty and inconsistency.
In da Costa, P. C. G., Laskey, K. B., Laskey, K. J.,
and Pool, M., editors, Proceedings of the Workshop on
Uncertainty Reasoning for the Semantic Web (URSW),
pages 45–55.
Hearst, M. A. (1992). Automatic acquisition of hyponyms
from large text corpora. In Proceedings of the 14th
conference on Computational linguistics, pages 539–
545, Morristown, NJ, USA. Association for Compu-
tational Linguistics.
Hobbs, J. R. and Gordon, A. S. (2005). Toward a large-
scale formal theory of commonsense psychology for
metacognition. In Proceedings of AAAI Spring Sym-
posium on Metacognition in Computation, pages 49–
54, Stanford, CA. ACM.
Kanungo, T., Mount, D., Netanyahu, N., Piatko, C., Silver-
man, R., and Wu, A. (2002). An efficient k-means
clustering algorithm: analysis and implementation.
Kokinov, B. and French, R. M. (2003). Computational mod-
els of analogy making. In Nadel, L., editor, Encyclo-
pedia of Conginitve Science, volume 1, pages 113–
118. Nature Publishing Group, London.
Nov
´
a
ˇ
cek, V. and Smr
ˇ
z, P. (2006). Empirical merging of
ontologies – a proposal of universal uncertainty repre-
sentation framework. In LNCS, volume 4011, pages
65–79. Springer-Verlag Berlin Heidelberg.
Paritosh, P. K. (2006). The heuristic reasoning manifesto.
In Proceedings of the 20th International Workshop on
Qualitative Reasoning.
Ryu, P.-M. and Choi, K.-S. (2005). An information-
theoretic approach to taxonomy extraction for on-
tology learning. In Buitelaar, P., Cimiano, P., and
Magnini, B., editors, Ontology Learning from Text:
Methods, Evaluation and Applications, pages 15–28.
IOS Press.
Sanchez, E., editor (2006). Fuzzy Logic and the Semantic
Web. Capturing Intelligence. Elsevier.
Sheth, A., Ramakrishnan, C., and Thomas, C. (2005). Se-
mantics for the semantic web: The implicit, the formal
and the powerful. International Journal on Semantic
Web & Information Systems, 1(1):1–18.
Staab, S. and Studer, R., editors (2004). Handbook on
Ontologies. International Handbooks on Information
Systems. Springer-Verlag.
Stoilos, G., Stamou, G., Tzouvaras, V., Pan, J., and Hor-
rocks, I. (2005). Fuzzy owl: Uncertainty and the se-
mantic web. International Workshop of OWL: Expe-
riences and Directions, Galway, 2005.
Zhdanova, A. V., Krummenacher, R., Henke, J., and Fensel,
D. (2005). Community–driven ontology management:
Deri case study. In Proceedings of IEEE/WIC/ACM
International Conference on Web Intelligence, pages
73–79. IEEE Computer Society Press.
IMPRECISE EMPIRICAL ONTOLOGY REFINEMENT - Application to Taxonomy Acquisition
37