2. Montejo-R
´
aez, A.: Automatic Text Categorization of Documents in the High Energy Physics
Domain. PhD thesis, University of Granada (2006)
3. Montejo-R
´
aez, A., Ure
˜
na L
´
opez, L.: Binary classifiers versus adaboost for labeling of digital
documents. Sociedad Espa
˜
nola para el Procesamiento del Lenguaje Natural (2006) 319–326
4. Montejo-R
´
aez, A., Ure
˜
na L
´
opez, L.: Selection strategies for multi-label text categorization.
Lecture Notes in Artificial Intelligence (2006) 585–592
5. Vassilevskaya, L.A.: An approach to automatic indexing of scientific publications in high
energy physics for database spires-hep. Master’s thesis, Fachhochsule Potsdam, Institut fr
Information und Dokumentation (2002)
6. Montejo-R
´
aez, A., Steinberger, R., Ure
˜
na L
´
opez, L.A.: Adaptive selection of base classifiers
in one-against-all learning for large multi-labeled collections. In et al., V.J.L., ed.: Advances
in Natural Language Processing: 4th International Conference, EsTAL 2004. Number 3230
in Lectures notes in artifial intelligence, Springer (2004) 1–12
7. Joachims, T.: Text categorization with support vector machines: learning with many relevant
features. In N
´
edellec, C., Rouveirol, C., eds.: Proceedings of ECML-98, 10th European Con-
ference on Machine Learning. Number 1398, Chemnitz, DE, Springer Verlag, Heidelberg,
DE (1998) 137–142
8. Lewis, D.D., Schapire, R.E., Callan, J.P., Papka, R.: Training algorithms for linear text clas-
sifiers. In Frei, H.P., Harman, D., Sch
¨
auble, P., Wilkinson, R., eds.: Proceedings of SIGIR-96,
19th ACM International Conference on Research and Development in Information Retrieval,
Z
¨
urich, CH, ACM Press, New York, US (1996) 298–306
9. Yang, Y.: A study on thresholding strategies for text categorization. In Croft, W.B., Harper,
D.J., Kraft, D.H., Zobel, J., eds.: Proceedings of SIGIR-01, 24th ACM International Confer-
ence on Research and Development in Information Retrieval, New Orleans, US, ACM Press,
New York, US (2001) 137–145 Describes RCut, Scut, etc.
10. Schapire, R.E., Singer, Y.: BoosTexter: A boosting-based system for text categorization.
Machine Learning 39 (2000) 135–168
11. Kohonen, T.: Self-organization and associative memory. 2 edn. Springer-Verlag (1995)
12. Mart
´
ın-Valdivia, M., Garc
´
ıa-Vega, M., Garc
´
ıa-Cumbreras, M., Ure
˜
na L
´
opez, L.: Text cat-
egorization using the learning vector quantization algorithm. In: Proceedings of Intelligent
Information Systems. New Trends in Intelligent Information Processing and Web Mining
(IIS:IIPWM-04), Zakopane, Poland, Springer-Verlag (2004)
221