One important benefit of such an HCI approach is that visual information makes it
possible to communicate with computerized equipment at a distance, without a need
for physical contact to the controlled target. Compared to speech commands, hand
gestures are especially advantageous in noisy environments –particularly in situations
where speech commands would be disturbed – as well as for communicating quantita-
tive information and spatial relationships. Furthermore, the human user shall be en-
abled to control electronic systems in a quite natural manner, without requiring spe-
cialized external equipment.
References
1. Pavlovic, V. I., Sharma, R., Huang, T. S.: Visual interpretation of hand gestures for human
computer interaction, Vol. 19. IEEE Transactions on Pattern Analysis and Machine Intelli-
gence (1997) 677 – 695
2. Rehg, J. M., Kanade, T.: Vision-based hand tracking for human-computer interaction,
IEEE, Workshop on Motion of Non-Rigid and Articulated Objects (1994) 16 - 22
3. Koike, Y., Kawato, M.: Human Interface Using Surface Electromyography Signals, Vol.
79. Electronics and Communications, Japan (1996) 15 – 22
4. Luca, C. J. D.: Physiology and mathematics of myoelectric signals. Vol. 266. IEEE Trans-
actions on Biomedical Engineering (1979)
5. Oakley, I., Angesleva, J., Hughes, S., O'Modhrain, S.: Tilt and Feel: Scrolling with Vibro-
tactile Display, The EuroHaptics (2004)
6. Rekimoto, J.: Gesture Wrist and Gesture Pad: Unobtrusive Wearable Interaction Devices,
Fifth IEEE International Symposium on Wearable Computers (2001)
7. Headon, R., Coulouris, G.: Supporting Gestural Input for Users on the Move, IEE Eu-
rowearable (2003) 107-112
8. Wheeler, K. R., Jorgensen, C. C.: Gestures as input: Neuroelectric joysticks and keyboards.
Vol. 2. IEEE Pervasive Computing (2003) 56–61
9. Trejo, L. J., Wheeler, K. R., Jorgensen, C. C., Rosipal, R., Clanton, T. S., Matthews, B.,
Hibbs, A. D., Matthews, R., Krupka, M.: Multimodal neuroelectric interface development,
Vol. 11. IEEE Transactions on Neural Systems and Rehabilitation Eng. (2003) 199– 204
10. Chan, A. D. C., Englehart, K. B.: Continuous myoelectric control for powered prostheses
using hidden markov models, Vol. 52. IEEE Transactions on Biomedical Engineering
(2005) 121–124
11. Fistre, J., Tanaka, A.: Real time EMG gesture recognition for consumer electronics device
control, Presented at Sony CSL Paris Open House, http://www.csl.sony.fr/ atau/gesture/
(2002)
12. Hyvarinen, A., Karhunen, J., Oja, E.: Independent Component Analysis, John Wiley, New
York (2001)
13. Jung, T., Makeig, S., Lee, T., McKeon, M., Brown, G., Bell, A., Sejnowski, T. : Independ-
ent component analysis of biomedical signals, Second International Workshop on Inde-
pendent Component Analysis and Blind Signal Separation (2001) 633–644
14. Makeig, S., Jung, T., Bell, A., Sejnowski, T.: Independent component analysis of electro-
encephalographic data, Vol. 8. Advances in neural information processing systems (1996)
145–151
15. Hyvarinen, A., Oja, E.: Fast fixedpoint algorithm for independent component analysis, The
Fast ICA matlab software package, http://www.cis.hut.fi/projects/ica/fastica/index.shtml
(1997)
180