REFERENCES
Aas, K. and Eikvil, L. (1999). Text categorisation: A sur-
vey. Technical report, Norwegian Computer Center.
Antonie, M. and Zaane, O. (2002). Text document catego-
rization by term association. IEEE International Con-
ference on Data Mining (ICDM), pages 19–26.
Basili, R., Moschitti, A., and Pazienza, M. T. (2000).
Language-sensitive text classification. In Proceeding
of RIAO-00, 6th International Conference “Recherche
d’Information Assistee par Ordinateur”, pages 331–
343, Paris, FR.
Buckley, C. (1993). The importance of proper weighting
methods. In M. Bates, editor, Human Language Tech-
nology Morgan Kaufman.
Dumais, S. T., Platt, J., Heckerman, D., and Sahami, M.
(1998). Inductive learning algorithms and representa-
tions for text categorization. In Gardarin, G., French,
J. C., Pissinou, N., Makki, K., and Bouganim, L., edi-
tors, Proceedings of CIKM-98, 7th ACM International
Conference on Information and Knowledge Manage-
ment, pages 148–155, Bethesda, US. ACM Press,
New York, US.
Granitzer, M. (2003). Hierarchical text classification using
methods from machine learning. Master’s thesis, Graz
University of Technology.
Joachims, T. (1998). Text categorization with support vec-
tor machines: learning with many relevant features. In
N´edellec, C. and Rouveirol, C., editors, Proceedings
of ECML-98, 10th European Conference on Machine
Learning, pages 137–142, Chemnitz, DE. Springer
Verlag, Heidelberg, DE. “Lecture Notes in Computer
Science” series, number 1398.
Joachims, T. (1999). Making large-Scale SVM Learn-
ing Practical. Advances in Kernel Methods - Sup-
port Vector Learning. Software available at
http://svmlight.joachims.org/.
Joachims, T. (2000). Estimating the generalization perfor-
mance of a svm efficiently. In Langley, P., editor, Pro-
ceedings of ICML-00, 17th International Conference
on Machine Learning, pages 431–438, Stanford, US.
Morgan Kaufmann Publishers, San Francisco, US.
Joachims, T. (2003). Support Vector and Kernel Methods.
SIGIR 2003 Tutorial.
Kongovi, M., Guzman, J. C., and Dasigi, V. (2002). Text
categorization: An experiment using phrases. In
Proceedings of ECIR-02, 24th European Colloquium
on Information Retrieval Research, pages 213–228,
Glasgow, UK.
M`arquez, L. and Gim´enez, J. (2004). A general pos tagger
generator based on support vector machines. Journal
of Machine Learning Research. Software available at
www.lsi.upc.edu/ nlp/SVMTool.
Moschitti, A. and Basili, R. (2004). Complex linguistic fea-
tures for text classification: A comprehensive study.
In Proceedings of ECIR-04, 26th European Confer-
ence on Information Retrieval Research, pages 181–
196. Springer Verlag, Heidelberg, DE.
Ruiz-Rico, F., Vicedo, J. L., and Rubio-S´anchez, M.-C.
(2006). Newpar: an automatic feature selection and
weighting schema for category ranking. In Proceed-
ings of DocEng-06, 6th ACM symposium on Docu-
ment engineering, pages 128–137.
Scott, S. and Matwin, S. (1999). Feature engineering for
text classification. In Bratko, I. and Dzeroski, S.,
editors, Proceedings of ICML-99, 16th International
Conference on Machine Learning, pages 379–388,
Bled, SL. Morgan Kaufmann Publishers, San Fran-
cisco, US.
Sebastiani, F. (1999). A tutorial on automated text categori-
sation. In Amandi, A. and Zunino, R., editors, Pro-
ceedings of ASAI-99, 1st Argentinian Symposium on
Artificial Intelligence, pages 7–35, Buenos Aires, AR.
An extended version appears as (?).
Singhal, A., Buckley, C., and Mitra, M. (1996). Pivoted
document length normalization. Department of Com-
puter Science, Cornell University, Ithaca, NY 14853.
Tan, C.-M., Wang, Y.-F., and Lee, C.-D. (2002). The use of
bigrams to enhance text categorization. Information
Processing and Management, 38(4):529–546.
Tesar, R., Strnad, V., Jezek, K., and Poesio, M. (2006). Ex-
tending the single words-based document model: a
comparison of bigrams and 2-itemsets. In DocEng
’06: Proceedings of the 2006 ACM symposium on
Document engineering, pages 138–146, New York,
NY, USA. ACM Press.
Yang, Y. and Liu, X. (1999). A re-examination of text
categorization methods. In Hearst, M. A., Gey,
F., and Tong, R., editors, Proceedings of SIGIR-99,
22nd ACM International Conference on Research and
Development in Information Retrieval, pages 42–49,
Berkeley, US. ACM Press, New York, US.
Z. Yang, Z. Lijun, Y. J. and Zhanhuai, L. (2003). Using as-
sociation features to enhance the performance of naive
bayes text classifier. Fifth International Conference on
Computational Intelligence and Multimedia Applica-
tions, ICCIMA ’03, pages 336–341.
Zu, G., Ohyama, W., Wakabayashi, T., and Kimura, F.
(2003). Accuracy improvement of automatic text clas-
sification based on feature transformation. In Pro-
ceedings of DOCENG-03, ACM Symposium on Doc-
ument engineering, pages 118–120, Grenoble, FR.
ACM Press, New York, US.