the 23rd Annual International Conference of the IEEE
Engineering in Medicine and Biology Society, 2, 1883-
1887.
Jensen, L., Yakimets, J., & Teo, K.K. (1995). A review of
impedance cardiography. Heart & Lung, 24, 183-193
Koh, M. S., & Rodriguez-Marek, E. (2003). Generalized
and parallelized ´a trous and Mallat algorithms to
design non-uniform filter-banks. Proceedings of the
IEEE International Symposium on Signal Processing
and Information, Darmstadt, Germany, 38-41.
Kohler, B.U., Hennig, C., & Orglmeister, R. (2002). The
principles of software QRS detection. IEEE Eng. in
Medicine and Biology, 2, 42-56
Kubicek, W. G., Kottke, F. J., Ramos, M. U., Patterson, R.
P., Witsoe, D. A., Labree, J. W., et al. (1974). The
Minnesota impedance cardiograph, theory and
applications. Biomedical Engineering, 9, 410-416
Leski, J., & Tkacz, E. (1992). A new parallel concept for
QRS complex detector. Proceedings of the 14th
Annual International. Conference. IEEE Eng. in
medicine and Biology Society, part 2 , Paris, France,
555-556
Mallat, S. G. (1989). A theory for multiresolution signal
decomposition: the wavelet representation.
Transactions on Pattern Analysis and Machine
Intelligence, 11, 674-693
Pan, J., & Tompkins, W.J. (1984). A real-time QRS
detection algorithm. IEEE Trans. Biomed. Eng., 22,
289-297
Patterson, R. P. (1989). Fundamentals of impedance
cardiography. IEEE Engineering in Medicine and
Biology Magazine, 8, 35-38
Rioul, O., & Duhamel, P. (1992). Fast algorithms for
discrete and continuous wavelet transforms. IEEE
Trans. Information Theory, 38(2), 569-586
Shensa, M.J. (1992). The discrete wavelet transform:
wedding the a’trous and Mallat algorithms. IEEE
Trans. on signal processing, 40, 2464-2482
Sramek, B. B. (1982). Cardiac output by electrical
impedance. Medical Electronics, 4, 93-97
Sun, Y., Chan, K. L, & Krishnan, S. M. (2005).
Characteristic wave detection in ECG signal using
morphological transform. BMC Cardiovascular
Disorders, 5, 28
Sun, Y., Suppappola, S., & Wrublewski, T.A. (1992).
Microcontroller-based real-time QRS detection.
Biomed. Instr. Technol., 26, 313-327
Suppappola, S., & Sun, Y. (1994). Nonlinear transforms of
ECG signals for digital QRS detection: A qualitative
analysis. IEEE Trans. Biomed. Eng., 41, 397-400
Treister, N., Wagner, K., & Jansen, P.R. (2005).
Reproducibility of impedance cardiography
parameters in outpatients with clinically stable
coronary artery disease. American Journal of
hypertension, 18, 44-50
Unser, M. (1994). Fast Gabor-like windowed Fourier and
continuous wavelet transforms.
IEEE Signal
Processing Letters, 1(4), 76-79
Unser, M., & Aldroubi A. (1996). A review of wavelets in
biomedical application. Proceedings of the IEEE,
84(4), 626-638
Yang, Li Y., Chenglin, P., Huafeng, W., Zhiqiang, Z., &
Min, M. (2005). Using a’trous Algorithm and
Modulus Maximum Lines to Detect R-wave of ECG
Signal. Proceedings of the 27th Annual Conference of
the IEEE Engineering in Medicine and Biology,
Shanghai, China, 1270-1273.
Wang, X., Sun, H., & Van De Water, J. M. (1995). An
advanced signal processing technique for impedance
cardiography. IEEE Trans. on Biomedical
Engineering, 42, 224-230.
A NEW METHOD FOR ICG CHARACTERISTIC POINT DETECTION
249