ACKNOWLEDGEMENTS
This research was carried out within projects funded
by the Ministry of Science and Technology of
Spain (TEC2006-12887-C02) and the Universidad
Polit´ecnica de Madrid (AL06-EX-PID-033).
REFERENCES
Bou-Ghazale, S. E. and Hansen, J. H. L. (2000). A compar-
ative study of traditional and newly proposed features
for recognition of speech under stress. IEEE Transac-
tions on Speech and Audio Processing, 8(4):429–442.
Boyanov, B. and Hadjitodorov, S. (1997). Acoustic analysis
of pathological voices. A voice analysis system for the
screening of laryngeal diseases. IEEE Engineering in
Medicine and Biology, 16(4):74–82.
Boyanov, B., Ivanov, T., Hadjitodorov, S., and Chollet, G.
(1993). Robust hybrid pitch detector. IEE Electronics
Letters, 29(22):1924–1926.
Deliyski, D. D. (1993). Acoustic model and evaluation
of pathological voice production. In Proceedings of
the 3
rd
Conference on Speech Communication and
Technology (EUROSPEECH’93), pages 1969–1972,
Berlin (Germany).
Deller, J. R., Proakis, J. G., and Hansen, J. H. L. (1993).
Discrete-time processing of speech signals. Macmil-
lan Publishing Company, New York (USA).
Duda, R. O., Hart, P. E., and Stork, D. G. (2001). Pattern
classification. John Wiley & sons, New York (USA),
2
nd
edition.
Fraile, R., Godino-Llorente, J. I., S´aenz-Lech´on, N., Osma-
Ruiz, V., and G´omez-Vilda, P. (2007). Analysis of
the impact of analogue telephone channel on mfcc pa-
rameters for voice pathology detection. In 8
th
INTER-
SPEECH Conference (INTERSPEECH 2007), pages
1218–1221, Antwerp (Belgium).
Ganchev, T., Fakotakis, N., and Kokkinakis, G. (2005).
Comparative evaluation of various MFCC implemen-
tations on the speaker verification task. In Proceed-
ings of the 10
th
International Conference on Speech
and Computer (SPECOM 2005), pages 191–194, Pa-
tras (Greece).
Godino-Llorente, J. I. and G´omez-Vilda, P. (2004). Au-
tomatic detection of voice impairments by means of
short-term cepstral parameters and neural network
based detectors. IEEE Transactions on Biomedical
Engineering, 51(2):380–384.
Godino-Llorente, J. I., G´omez-Vilda, P., and Blanco-
Velasco, M. (2006a). Dimensionality reduction of a
pathological voice quality assessment system based
on gaussian mixture models and short-term cepstral
parameters. IEEE Transactions on Biomedical Engi-
neering, 53(10):1493–1953.
Godino-Llorente, J. I., S´aenz-Lech´on, N., Osma-Ruiz, V.,
Aguilera-Navarro, S., and G´omez-Vilda, P. (2006b).
An integrated tool for the diagnosis of voice disorders.
Medical Engineering & Physics, 28(3):276–289.
Haykin, S. (1994). Neural Networks: a comprehensive
foundation. Macmillan College Publishing Company,
New York (USA), 1
st
edition.
Jackson-Menaldi, M. C. A. (2002). La voz patol´ogica.
Editorial M´edica Panamericana, Buenos Aires (Ar-
gentina).
Kay Elemetrics Corp. (1994). Disordered voice
database.version 1.03.
Martin, A., Doddington, G., Kamm, T., Ordowski, M., and
Przybocki, M. (1997). The DET curve in assess-
ment of detection task performance. In Proceedings
of the 5
th
Conference on Speech Communication and
Technology (EUROSPEECH’97), pages 1895–1898,
Rhodes (Greece).
Murphy, P. J. and Akande, O. O. (2005). Quantification
of glottal and voiced speech harmonics-to-noise ratios
using cepstral-based estimation. In Proceedings of the
3
th
International Conference on Non-Linear Speech
Processing (NOLISP’05), pages 224–232, Barcelona
(Spain).
Proakis, J. G. and Manolakis, D. G. (1996). Digital Sig-
nal Processing. Principles, Algorithms and Applica-
tions. Prentice-Hall International, New Jersey (USA),
3
rd
edition.
Rabiner, L. and Juang, B. H. (1993). Fundamentals of
speech recognition. Prentice-Hall, Englewood Cliffs
(USA).
USE OF CEPSTRUM-BASED PARAMETERS FOR AUTOMATIC PATHOLOGY DETECTION ON SPEECH -
Analysis of Performance and Theoretical Justification
91