REFERENCES
Abraham, A., Grosan, C., and Ramos, V. (2006). Swarm In-
telligence in Data Mining (Studies in Computational
Intelligence). Springer.
Bilchev, G. and Parmee, I. C. (1993). The ant colony
metaphor for searchin continuous design spaces. Proc.
of AISB Workshop on Evolutionary Computing Lec-
ture Notes inComputer Science, pages 25–39.
Bursa, M., Huptych, M., and Lhotska, L. (2006). The use of
nature inspired methods in electrocardiogram analy-
sis. International Special Topics Conference on Infor-
mation Technology in Biomedicine [CD-ROM]. Pis-
cataway: IEEE.
Bursa, M., Lhotska, L., and Macas, M. (2007). Hybridized
swarm metaheuristics for evolutionary random for-
est generation. Proceedings of the 7th International
Conference on Hybrid Intelligent Systems 2007 (IEEE
CSP), pages 150–155.
Chudacek, V. and Lhotska, L. (2006). Unsupervised cre-
ation of heart beats classes from long-term ecg mon-
itoring. Conference: Analysis of Biomedical Signals
and Images. 18th International EURASIP Conference
Biosignals 2006. Proceedings., 18:199–201.
Davies, D. L. and Bouldin, D. W. (1979). A cluster separa-
tion measure. IEEE Transactions on Pattern Recogni-
tion and Machine Intelligence, 1 No. 2:224–227.
Deneubourg, J. L., Goss, S., Franks, N., Sendova-Franks,
A., Detrain, C., and Chretien, L. (1990). The dynam-
ics of collective sorting robot-like ants and ant-like
robots. In Proceedings of the first international con-
ference on simulation of adaptive behavior on From
animals to animats, pages 356–363, Cambridge, MA,
USA. MIT Press.
Dorigo, M. and Blum, C. (2005). Ant colony optimization
theory: A survey. Theoretical Computer Science Is-
sues 2–3, 344:243–278.
Dorigo, M., Caro, G. D., and Gambardella, L. M. (1999).
Ant algorithms for discrete optimization. Artif. Life,
5(2):137–172.
Dunn, J. C. (1974). Well separated clusters and optimal
fuzzy partitions. Journal of Cybernetics, 4:95–104.
Gerla, V., Lhotska, L., Krajca, V., and Paul, K. (2006).
Multichannel analysis of the newborn eeg data. IEEE
ITAB International Special Topics Conference on In-
formation Technology in Biomedicine. Piscataway:
IEEE.
Goldberger, A. L., Amaral, L. A. N., Glass, L., Hausdorff,
J. M., Ivanov, P. C., Mark, R. G., Mietus, J. E., Moody,
G. B., Peng, C.-K., and Stanley, H. E. (2000). Phys-
ioBank, PhysioToolkit, and PhysioNet: Components
of a new research resource for complex physiologic
signals. Circulation, 101(23):e215–e220.
Handl, J., Knowles, J., and Dorigo, M. (2006). Ant-based
clustering and topographic mapping. Artificial Life
12(1), 12:35–61.
Jain, A., Murty, M. N., and Flynn, P. J. (1999). Data cluster-
ing: A review. ACM Computing Surveys, 31:264–323.
Kennedy, J. and Eberhart, R. C. (1995). Particle swarm op-
timization. Proceedings IEEE International Confer-
ence on Neural Networks, IV:1942–1948.
Lumer, E. D. and Faieta, B. (1994). Diversity and adapta-
tion in populations of clustering ants. From Animals to
Animats: Proc. of the 3th Int. Conf. on the Simulation
of Adaptive Behaviour, 3:501–508.
Panos M. Pardalos, Vladimir L.Boginski, A. V., editor
(2007). Data Mining in Biomedicine. Springer.
R. O. Schoonderwoerd, e. a. (1996). Ant-based load balanc-
ing in telecommunications networks. Adaptive Behav-
ior 5, pages 169–207.
Rousseeuw, P. and Kaufman, L. (1990). Finding Groups
in Data: An Introduction to Cluster Analysis. John
Wiley & Sons.
Rousseeuw, P. J. (1987). Silhouettes: a graphical aid to
the interpretation and validation of cluster analysis. J.
Comp App. Math, 20:53–65.
Scher, M. S. (2004). Automated EEG-sleep analyses and
neonatal neurointensive care.
Socha, K. (2004). Aco for continuous and mixed-variable
optimization. Proceedings of ANTS 2004 Lecture
Notes in Comput Science, Springer, 3172:25–36.
Tan, S. C., Ting, K. M., and , S. W. T. (2006). Reproducing
the results of ant-based clustering without using ants.
CEC 2006. IEEE Congress on Evolutionary Compu-
tation, pages 1760–1767.
Teofilo, L. and Lee-Chiong (2006). SLEEP: a comprehen-
sive handbook. Johm Wiley & Sons, Inc., Hoboken,
New Jersey.
Vizine, A. L., de Castro, N. L., Hruschka, E. R., and Gud-
win, R. R. (2005). Towards improving clustering ants:
An adaptive ant clustering algorithm. Informatica 29,
pages 143–154.
Witten, I. H. and Frank, E. (2005). Data Mining: Practical
machine learning tools and techniques, 2nd Edition.
Morgan Kaufmann, San Francisco.
ANT COLONY INSPIRED METAHEURISTICS IN BIOLOGICAL SIGNAL PROCESSING - Hybrid Ant Colony and
Evolutionary Approach
95