in detail which factors influence the recognition rates
to what extent. Second, evaluating of normalizing al-
gorithms for different aspects e.g. pose or facial ex-
pression under real-world conditions. Finally, evalu-
ation of further face recognition techniques is needed
e.g. Hidden Markov Model (M. Bicego and Murino,
2003) or 2D Gabor Wavelet (Wiskott et al., 1997).
ACKNOWLEDGEMENTS
Parts of the presented research were realized within an
ongoing partnership with the MAGIX AG. The pub-
lication was supported by grant No. 01MQ07017 of
the German THESEUS program.
REFERENCES
Adini, Y., Moses, Y., and Ullman, S. (1997). Face recog-
nition: The problem of compensating for changes in
illumination direction. IEEE Transactions on Pattern
Analysis and Machine Intelligence, 19(7):721–732.
Belhumeur, P. N., Hespanha, J. P., and J.Kriegman, D.
(1997). Eigenfaces vs. fisherfaces: Recognition us-
ing class specific linear projection. IEEE Transac-
tions on Pattern Analysis and Machine Intelligence,
19(7):711–720.
Cohen, M. A. and Grossberg, S. (1984). Neural dynamics
of brightness perception: Features, boundaries, diffu-
sion, and resonance. Perception and Psychophysics,
36(5):428–456.
Georghiades, A. S., Belhumeur, P. N., and Kriegman, D. J.
(2001). From few to many: Illumination cone models
for face recognition under variable lighting and pose.
IEEE Transactions on Pattern Analysis and Machine
Intelligence, 23(6):643–660.
Gross, R. and Brajovic, V. (2003). An image preprocess-
ing algorithm for illumination invariant face recog-
nition. 4th International Conference on Audio- and
Video-Based Biometric Person Authentication, pages
10–18.
Jobson, D. J. and Woodell, G. A. (1995). Properties
of a center/surround retinex: Part 2 - surround de-
sign. Technical report, NASA Technical Memoran-
dum 110188.
Ko, J., Kim, E., and Byun, H. (2002). A simple illumina-
tion normalization algorithm for face recognition. In
PRICAI ’02: Proceedings of the 7th Pacific Rim Inter-
national Conference on Artificial Intelligence, pages
532–541. Springer-Verlag.
Koenderink, J. (1984). The structure of images. Biological
cybernetics, pages 363–370.
Land, E. H. (1977). The retinex theory of color vision.
Scientific American, 237(6):108–120, 122–123, 126,
128.
Levine, M. D., Gandhi, M. R., and Bhattacharyya, J. (2004).
Image normalization for illumination compensation in
facial images.
M. Bicego, U. C. and Murino, V. (2003). Using hidden
markov models and wavelets for face recognition. In
12th International Conference on Image Analysis and
Processing, pages 52–56.
Perona, P. and Malik, J. (1990). Scale-space and edge de-
tection using anisotropic diffusion. IEEE Transac-
tions on Pattern Analysis and Machine Intelligence,
12(7):629–639.
Rahman, Z., Jobson, D. J., and Woodell, G. A. (1996).
Multi-scale retinex for color image enhancement. In-
ternational Conference on Image Processing.
Savvides, M. and Kumar, B. V. K. V. (2003). Illumina-
tion normalization using logarithm transforms for face
authentication. Audio- and Video-Based Biometric
Person Authentication: 4th International Conference,
pages 549–556.
Shan, S., Gao, W., Cao, B., and Zhao, D. (2003). Illumina-
tion normalization for robust face recognition against
varying lighting conditions. IEEE International Work-
shop on Analysis and Modeling of Faces and Gestures,
pages 157–164.
Turk, M. A. and Pentland, A. P. (1991). Face recognition
using eigenfaces. IEEE Proceedings of Computer Vi-
sion and Pattern Recognition, pages 586–591.
van den Boomgaard, R. (2004). Geometry driven diffusion.
Lecture Notes at University of Amsterdam.
Villegas-Santamaria, M. and Paredes-Palacios, R. (2005).
Comparison of illumination normalization for face
recognition. Third COST 275 Workshop Biometrics
on the Internet, pages 27–30.
Wandel, B. (1995). Foundations of vision. Sunderland MA:
Sinauer.
Wang, H., Li, S. Z., and Wang, Y. (2004). Face recognition
under varying lighting conditions using self quotient
image. Sixth IEEE International Conference on Auto-
matic Face and Gesture Recognition, pages 819–824.
Weickert, J. (1998). Anisotropic Diffusion in Image Pro-
cessing. Teubner-Verlag, Stuttgart.
Wiskott, L., Fellous, J.-M., Krger, N., and von der Mals-
burg, C. (1997). Face recognition by elastic bunch
graph matching. IEEE Transactions on Pattern Anal-
ysis and Machine Intelligence, 19(7):775–779.
Witkin, A. P. (1983). Scale space filtering. Proceedings In-
ternational Joint Conference on Artificial Intelligence,
pages 1019–1023.
Xie, X. and Lam, K.-M. (2006). An efficient illumination
normalization method for face recognition. Pattern
Recognition Letters, 27(6):609–617.
Zuiderveld, K. (1994). Contrast limited adaptive histogram
equalization. Graphics gems IV, pages 474–485.
ILLUMINATION NORMALIZATION FOR FACE RECOGNITION - A Comparative Study of Conventional vs.
Perception-inspired Algorithms
243